
PART II REPRESENTATION THEORY
SHEET 4

Unless otherwise stated, all vector spaces are finite-dimensional over C. In the first seven
questions we let G = SU(2).

1 Let Vn be the vector space of complex homogeneous polynomials of degree n in the
variables x and y. Describe a representation ρn of G on Vn and show that it is irreducible.
What is its character? Show that Vn is isomorphic to its dual V ∗n .

2 Decompose the representation V4 ⊗ V3 into irreducible G-spaces (that is, find a direct
sum of irreducible representations which is isomorphic to V4 ⊗ V3; in this and the following
questions, you are not being asked to find such an isomorphism explicitly). Decompose V ⊗n1

into irreducibles.

3 Determine the character of SnV1 for n > 1.
Decompose S2Vn and Λ2Vn into irreducibles for n > 1.
Decompose S3V2 into irreducibles.

4 Let G act on the space M3(C) of 3× 3 complex matrices, by conjugation:

A : X 7→ A1XA
−1
1 ,

where A1 is the 3× 3 block diagonal matrix with block diagonal entries A, 1. Show that this
gives a representation of G and decompose it into irreducibles.

5 Let χn be the character of the irreducible representation ρn of G on Vn of dimension
n+ 1.

Show that
1

2π

∫ 2π

0

K(z)χnχmdθ = δnm,

where z = eiθ and K(z) = 1
2
(z − z−1)(z−1 − z).

[ Note that all you need to know about integrating on the circle is orthogonality of characters:
1
2π

∫ 2π

0
zndθ = δn,0. This is really a question about Laurent polynomials. ]

6 Check that the usual formula for integrating functions defined on S3 ⊆ R4 defines a
G-invariant inner product on the vector space of integrable functions on

G = SU(2) =

{(
a b
−b̄ ā

)
: aā+ bb̄ = 1

}
,

and normalize it so that the integral over the group is one.

7 Compute the character of the representation SnV2 of G for any n > 0. Calculate
dimC(SnV2)

G (by which we mean the subspace of SnV2 where G acts trivially).
Deduce that the ring of complex polynomials in three variables x, y, z which are invariant

under the action of SO(3) is a polynomial ring. Find a generator for this polynomial ring.
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8 (a) Let G be a compact group. Show that there is a continuous group homomorphism
ρ : G→O(n) if and only if G has an n-dimensional representation over R. Here O(n) denotes
the subgroup of GLn(R) preserving the standard (positive definite) symmetric bilinear form.
(b) Explicitly construct such a representation ρ : SU(2)→ SO(3) by showing that SU(2) acts
on the vector space of matrices of the form{

A =

(
a b
c −a

)
∈ M2(C) : A+ At = 0

}
by conjugation. Show that this subspace is isomorphic to R3, that (A,B) 7→ −tr(AB) is an
invariant positive definite symmetric bilinear form, and that ρ is surjective with kernel {±I}.

9 The Heisenberg group of order p3 is the (non-abelian) subgroup

G =


 1 a x

0 1 b
0 0 1

 : a, b, x ∈ Fp

 .

of matrices over the finite field Fp (p prime). Let H be the subgroup of G comprising matrices
with a = 0 and Z be the subgroup of G of matrices with a = b = 0.

(a) Show that Z = Z(G), the centre of G, and that G/Z = F2
p. Note that this implies

that the derived subgroup G′ is contained in Z. [You can check by explicit computation that
it equals Z, or you can deduce this from the list of irreducible representations found in (d)
below.]

(b) Find all 1-dimensional representations of G.
(c) Let ψ : Fp → C× be a non-trivial 1-dimensional representation of the cyclic group

Fp = Z/p, and define a 1-dimensional representation ρψ of H by

ρψ

 1 0 x
0 1 b
0 0 1

 = ψ(x).

Show that IndGHρψ is an irreducible representation of G.
(d) Prove that the collection of representations constructed in (b) and (c) gives a com-

plete list of all irreducible representations.
(e) Determine the character of the irreducible representation IndGHρψ.

10 Recall Sheet 3, q.8 where we used inner products to construct some irreducible characters
χ(n−r,r) for Sn. Let n ∈ N, and let Ω be the set of all ordered pairs (i, j) with i, j ∈ {1, 2, . . . , n}
and i 6= j. Let G = Sn act on Ω in the obvious manner (namely, σ(i, j) = (σi, σj) for σ ∈ Sn).
Let’s write π(n−2,1,1) for the permutation character of Sn in this action.

Prove that
π(n−2,1,1) = 1 + 2χ(n−1,1) + χ(n−2,2) + ψ,

where ψ is an irreducible character. Writing ψ = χ(n−2,1,1), calculate the degree of χ(n−2,1,1).
Find its value on any transposition and on any 3-cycle. Returning to the character table of
S6 calculated on Sheet 3, identify the character χ(4,1,1).
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11 Recall the character table of G = PSL2(7) from Sheet 2, q.8. Identify the columns
corresponding to the elements x and y where x is an element of order 7 (eg the unitriangular
matrix with 1 above the diagonal) and y is an element of order 3 (eg the diagonal matrix
with entries 4 and 2).

The group G acts as a permutation group of degree 8 on the set of Sylow 7-subgroups
(or the set of 1-dimensional subspaces of the vector space (F7)

2). Obtain the permutation
character of this action and decompose it into irreducible characters.

*(Harder) Show that the group G is generated by an element of order 2 and an element
of order 3 whose product has order 7.
[Hint: for the last part use the formula that the number of pairs of elements conjugate to x
and y respectively, whose product is conjugate to t, equals c

∑
χ(x)χ(y)χ(t−1)/χ(1), where

the sum runs over all the irreducible characters of G, and c = |G|2(|CG(x)||CG(y)||CG(t)|)−1.]

12 [For enthusiasts only.]
It is known that the classification of finite subgroups of SO(3) is as follows:
• the cyclic group Z/nZ, n > 1, generated by a rotation by 2π/n around an axis;
• the dihedral group D2m of order 2m, m > 2 (the group of rotational symmetries in

3-space of a plane containing a regular m-gon);
• A4, the group of rotations of a regular tetrahedron;
• S4, the group of rotations of a cube or regular octahedron;
• A5, the group of rotations of a regular dodecahedron or icosahedron.
By considering the homomorphism SU(2) → SO(3), classify1 the finite subgroups of

SU(2).

SM, Lent Term 2015
Comments on and corrections to this sheet may be emailed to sm@dpmms.cam.ac.uk

1Alternatively, as seen in Part III, a correspondence due to McKay gives a bijection between the finite
subgroups of SU(2) and the so-called affine simply laced Dynkin diagrams. The bijection associates naturally
to each finite-dimensional representation of SU(2) a vertex of the corresponding diagram.


