Representation Theory — Examples Sheet 4

On this sheet all representations are complex representations unless stated otherwise

- 1. Show that character values of S_n are always integers.
- 2. Let G = SU(2) and V_n be the vector space of complex homogeneous polynomials of degree n in the variables x and y.
 - (a) Describe how to view V_n as an irreducible representation of SU(2). What is its character?
 - (b) Show that V_n is isomorphic to its dual V_n^* .
 - (c) Decompose the representations $V_4 \otimes V_3$, $V_3 \otimes V_3$, S^2V_3 and Λ^2V_3 into irreducibles.
 - (d) How do $V_1^{\otimes n}$, $S^n V_1$, $S^2 V_n$ and $\Lambda^2 V_n$ decompose into irreducibles for $n \geq 1$. What about $S^3 V_2$?
- 3. Let SU(2) act on the space $M_3(\mathbb{C})$ of 3×3 complex matrices by

$$A: X \mapsto A_1 X A_1^{-1}$$

where A_1 is the 3×3 block diagonal matrix with block diagonal entries A, 1. Show that this defines a representation of SU(2) and decompose it into irreducibles.

4. Let χ_n be the character of the irreducible representation of SU(2) of dimension n+1. Show that

$$\frac{1}{2\pi} \int_0^{2\pi} K(z) \overline{\chi_n} \chi_m \, \mathrm{d}\theta = \delta_{nm},$$

where $z = e^{i\theta}$ and $K(z) = -\frac{1}{2}(z - z^{-1})^2$.

5. Let G be a compact group. Show that there is a continuous group homomorphism from G to the orthogonal group O(n) if and only if G has an n-dimensional representation over \mathbb{R} .

By considering the action of SU(2) by conjugation on the 2×2 complex matrices A such that $A = -\overline{A}^T$ and $\operatorname{tr} A = 0$, construct a continuous group homomorphism $SU(2) \to SO(3)$. Deduce that $SU(2)/\{\pm I\} \cong SO(3)$ as topological groups.

- 6. Write down a Haar measure on SU(2) and prove that it is translation invariant and normalised correctly.
- 7. The Heisenberg group is the group G of order p^3 of upper unitriangular matrices over the field with p elements. Show that G has p conjugacy classes of size 1 and $p^2 1$ conjugacy classes of size p. Find p^2 characters of G of degree 1.

Find an abelian subgroup H of G of order p^2 . By induction of characters from H to G show that G has p-1 irreducible characters of degree p. Write down the character table of G.

- 8. Let $G = PSL_2(\mathbb{F}_7)$. Calculate the character table of G. By considering the structure constants of $Z(\mathbb{C}G)$, and only using information in the character table, show that G has elements of order 2 and 3 whose product has order 7. Deduce that G is generated by two of its elements.
- 9. Let \mathbb{F} be the field with 2^n elements for some $n \geq 1$. Construct the character table of $GL_2(\mathbb{F})$. Deduce that $PGL_2(\mathbb{F})$ is simple for $n \geq 2$. What can you say about $PGL_2(\mathbb{F})$ when n = 1?

Comments and corrections to S.J.Wadsley@dpmms.cam.ac.uk.