PART II REPRESENTATION THEORY SHEET 4

Unless otherwise stated, all vector spaces are finite-dimensional over \mathbb{C} . In the first nine questions we let G = SU(2).

(a) Let V_n be the vector space of complex homogeneous polynomials of degree n in the 1 variables x and y. Describe a representation ρ_n of G on V_n and show that it is irreducible. Describe the character χ_n of ρ_n .

(b) Decompose $V_4 \otimes V_3$ into irreducible *G*-spaces (that is, find a direct sum of irreducible representations which is isomorphic to $V_4 \otimes V_3$. In this and the following questions, you are not being asked to find such an isomorphism explicitly.)

- (c) Decompose also $V_3^{\otimes 2}$, $\Lambda^2 V_3$ and $S^2 V_3$.
- (d) Show that V_n is isomorphic to its dual V_n^* .
- Decompose $V_1^{\otimes n}$ into irreducibles. 2

3 Determine the character of $S^n V_1$ for $n \ge 1$. Decompose S^2V_n and Λ^2V_n for $n \ge 1$. Decompose S^3V_2 into irreducibles.

4 Let G act on the space $M_3(\mathbb{C})$ of 3×3 complex matrices, by

$$A: X \mapsto A_1 X A_1^{-1},$$

where A_1 is the 3 \times 3 block diagonal matrix with block diagonal entries A, 1. Show that this gives a representation of G and decompose it into irreducibles.

Let χ_n be the character of the irreducible representation ρ_n of G on V_n . $\mathbf{5}$ Show that

$$\frac{1}{2\pi} \int_{0}^{2\pi} K(z) \chi_n \overline{\chi_m} d\theta = \delta_{nm},$$

where $z = e^{i\theta}$ and $K(z) = \frac{1}{2}(z - z^{-1})(z^{-1} - z)$. [Note that all you need to know about integrating on the circle is orthogonality of characters: $\frac{1}{2\pi} \int_0^{2\pi} z^n d\theta = \delta_{n,0}$. This is really a question about Laurent polynomials.

(a) Let G be a compact group. Show that there is a continuous group homomorphism 6 $\rho: G \to O(n)$ if and only if G has an n-dimensional representation over \mathbb{R} . Here O(n) denotes the subgroup of $\operatorname{GL}_n(\mathbb{R})$ preserving the standard (positive definite) symmetric bilinear form. (b) Explicitly construct such a representation $\rho: SU(2) \to SO(3)$ by showing that SU(2) acts on the vector space of matrices of the form

$$\left\{A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) : A + \overline{A^t} = 0\right\}$$

by conjugation. Show that this subspace is isomorphic to \mathbb{R}^3 , that $(A, B) \mapsto -\mathrm{tr}(AB)$ is a positive definite non-degenerate invariant bilinear form, and that ρ is surjective with kernel $\{\pm I\}.$

7 Check that the usual formula for integrating functions defined on $S^3 \subseteq \mathbf{R}^4$ defines an G-invariant inner product on

$$G = \mathrm{SU}(2) = \left\{ \left(\begin{array}{cc} a & b \\ -\bar{b} & \bar{a} \end{array} \right) : a\bar{a} + b\bar{b} = 1 \right\},\$$

and normalize it so that the integral over the group is one.

8 Suppose we are given that H is a subgroup of order 24 in G. We are told that H contains $\{\pm I\}$ as a normal subgroup, and that the quotient group $H/\{\pm I\}$ is isomorphic to A_4 . Find the character table of H. [You may assume that H has a conjugacy class containing six elements of order 4, two conjugacy classes each containing four elements of order 3, and two conjugacy classes each containing four elements of order 6.]

9 Compute the character of the representation S^nV_2 of G for any $n \ge 0$. Calculate $\dim_{\mathbb{C}}(S^nV_2)^G$ (by which we mean the subspace of S^nV_2 where G acts trivially).

Deduce that the ring of complex polynomials in three variables x, y, z which are invariant under the action of SO(3) is a polynomial ring. Find a generator for this polynomial ring.

10 The *Heisenberg group* of order p^3 is the (non-abelian) group

$$G = \left\{ \left(\begin{array}{ccc} 1 & a & x \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array} \right) : a, b, x \in \mathbb{F}_p \right\}.$$

of 3×3 upper unitriangular matrices over the finite field \mathbb{F}_p of p elements (p prime).

Show that G has p conjugacy classes of size 1, and $p^2 - 1$ conjugacy classes of size p. Find p^2 characters of degree 1.

Let H be the subgroup of G comprising matrices with a = 0. Let $\psi : \mathbb{F}_p \to \mathbb{C}^{\times}$ be a nontrivial 1-dimensional representation of the cyclic group $\mathbb{F}_p = \mathbb{Z}/p$, and define a 1-dimensional representation ρ of H by

$$\rho \left(\begin{array}{ccc}
1 & 0 & x \\
0 & 1 & b \\
0 & 0 & 1
\end{array} \right) = \psi(x).$$

Check that $V_{\psi} = \operatorname{Ind}_{H}^{G} \rho$ is irreducible.

Now list all the irreducible representations of G, explaining why your list is complete.

11 Recall Sheet 3, q.8 where we used inner products to construct some irreducible characters $\chi^{(n-r,r)}$ for S_n . Let $n \in \mathbb{N}$, and let Ω be the set of all ordered pairs (i, j) with $i, j \in \{1, 2, \ldots, n\}$ and $i \neq j$. Let $G = S_n$ act on Ω in the obvious manner (namely, $\sigma(i, j) = (\sigma i, \sigma j)$ for $\sigma \in S_n$). Let's write $\pi^{(n-2,1,1)}$ for the permutation character of S_n in this action.

Prove that

$$\pi^{(n-2,1,1)} = 1 + 2\chi^{(n-1,1)} + \chi^{(n-2,2)} + \psi$$

where ψ is an irreducible character. Writing $\psi = \chi^{(n-2,1,1)}$, calculate the degree of $\chi^{(n-2,1,1)}$. Find its value on any transposition and on any 3-cycle. Returning to the character table of S_6 calculated on Sheet 3 q.11, identify the character $\chi^{(4,1,1)}$.