PART II REPRESENTATION THEORY SHEET 1

Unless otherwise stated, all groups here are finite, and all vector spaces are finite-dimensional over a field F of characteristic zero, usually \mathbb{C} .

- 1 Let ρ be a representation of the group G.
 - (a) Show that $\delta: g \mapsto \det \rho(g)$ is a 1-dimensional representation of G.
 - (b) Prove that $G/\ker \delta$ is abelian.
- (c) Assume that $\delta(g) = -1$ for some $g \in G$. Show that G has a normal subgroup of index 2.
- **2** Let $\theta: G \to F^{\times}$ be a 1-dimensional representation of the group G, and let $\rho: G \to \operatorname{GL}(V)$ be another representation. Show that $\theta \otimes \rho: G \to \operatorname{GL}(V)$ given by $\theta \otimes \rho: g \mapsto \theta(g) \cdot \rho(g)$ is a representation of G, and that it is irreducible if and only if ρ is irreducible.
- **3** Given any prime p. Find an example of a representation of some finite group over some field of characteristic p, which is not completely reducible. Find an example of such a representation in characteristic 0 for an infinite group. [Thus Maschke's Theorem can fail if F is not \mathbb{R} or \mathbb{C} or if G is not finite.]
- 4 Let N be a normal subgroup of the group G. Given a representation of the quotient G/N, use it to obtain a representation of G. Which representations of G do you get this way? Recall that the derived subgroup G' of G is the unique smallest normal subgroup of G such that G/G' is abelian. Show that the 1-dimensional complex representations of G are precisely those obtained from the abelianisation G/G'.
- 5 Describe Weyl's unitary trick.

Let G be a finite group acting on a complex vector space V, and let $\langle \ , \ \rangle$ be an alternating bilinear form from $V \times V$ to \mathbb{C} (so $\langle \ y, \ x \ \rangle = -\langle \ x, \ y \ \rangle$ for x, y in V).

Show that the form $(x,y) = \frac{1}{|G|} \sum \langle gx, gy \rangle$, where the sum is over all elements $g \in G$, is a G-invariant alternating form.

Does this imply that every finite subgroup of $GL_{2m}(\mathbb{C})$ is conjugate to a subgroup of the symplectic group $Sp_{2m}(\mathbb{C})$?

- 6 Let G be a cyclic group of order n. Decompose the regular representation of G explicitly as a direct sum of 1-dimensional representations, by giving the matrix of change of coordinates from the natural basis $\{e_g\}_{g\in G}$ to a basis where the group action is diagonal.
- 7 Let G be the dihedral group D_{10} of order 10, with presentation

$$D_{10} = \langle x, y : x^5 = 1 = y^2, yxy^{-1} = x^{-1} \rangle.$$

Show that G has precisely two 1-dimensional representations. By considering the effect of y on an eigenvector of x show that any complex irreducible representation of G of dimension at least 2 is isomorphic to one of two representations of dimension 2. Show that all these representations can be realised over \mathbb{R} .

8 Let G be the quaternion group with presentation

$$Q_8 = \langle x, y \mid x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle.$$

By considering the effect of y on an eigenvector of x show that any complex irreducible representation of G of dimension at least 2 is isomorphic to the standard representation of Q_8 of dimension 2.

Show that this 2-dimensional representation cannot be realised over \mathbb{R} ; that is, Q_8 is not a subgroup of $GL_2(\mathbb{R})$.

9 State Maschke's theorem.

Show that any irreducible complex representation of the finite group G is isomorphic to a subrepresentation of the regular representation of G.

10 State Schur's lemma.

Show that if G is a finite group with trivial centre and H is a subgroup of G with non-trivial centre, then any faithful representation of G is reducible on restriction to H.

11 Let G be a subgroup of order 18 of the symmetric group S_6 given by

$$G = \langle (123), (456), (23)(56) \rangle.$$

Show that G has a normal subgroup of order 9 and four normal subgroups of order 3. By considering quotients, show that G has two representations of degree 1 and four inequivalent irreducible representations of degree 2. Deduce that G has no faithful irreducible representations.

- 12 Work over $F = \mathbb{R}$. Show that the cyclic group $C_3 = \mathbb{Z}/3$ has up to equivalence only one non-trivial irreducible representation over \mathbb{R} . If (ρ, V) is this representation, show that $\dim_{\mathbf{R}} \operatorname{Hom}_G(V, V) = 2$. Comment.
- 13 Show that if ρ is a homomorphism from the finite group G to $GL_n(\mathbb{R})$, then there is a matrix $P \in GL_n(\mathbb{R})$ such that $P\rho(g)P^{-1}$ is an orthogonal matrix for each $g \in G$. (Recall that the real matrix A is orthogonal if $A^tA = I$.)

Determine all finite groups which have a faithful 2-dimensional representation over \mathbb{R} .

14 Prove that for every finite simple group G, there exists a faithful irreducible complex representation. (Hint: recall that the regular representation is faithful).

SM, Lent Term 2009

Comments and corrections on this sheet may be emailed to sm@dpmms.cam.ac.uk