Part II Representation Theory Sheet 2

Unless otherwise stated, all vector spaces are finite dimensional over a field F of characteristic zero, usually \mathbf{C} .

- **Q.1** Let $\rho: G \to GL(V)$ be a representation of G of dimension d, with character χ . Show that $\ker \rho = \{g \in G \mid \chi(g) = d\}$. Show further that $|\chi(g)| \leq d$ for all $g \in G$, with equality only if $\rho(g) = \lambda I$, a scalar multiple of the identity, for some root of unity λ .
- **Q.2** Let χ be the character of a representation V of G and let g be an element of G. If g has order 2, show that $\chi(g)$ is an integer and $\chi(g) \equiv \chi(1) \mod 2$. If G is simple (but not C_2), show that in fact $\chi(g) \equiv \chi(1) \mod 4$. (Hint: Consider the determinant of g acting on V.) If g has order 3 and is conjugate to g^{-1} , show that $\chi(g) \equiv \chi(1) \mod 3$.
- **Q.3** Construct the character table of the dihedral group D_8 and of the quaternion group Q_8 . Comment.
- **Q.4** Construct the character table of the dihedral group D_{10} .

Each irreducible representation of D_{10} may be regarded as a representation of the cyclic subgroup C_5 . Determine how each irreducible representation of D_{10} decomposes into irreducible representations of C_5 .

Repeat for D_{12} and the cyclic subgroup C_6 of D_{12} .

Q.5 Construct the character tables of A_4 , S_4 , S_5 , and A_5 .

The group S_n acts by conjugation on the set of elements of A_n . This induces an action on the set of conjugacy classes and on the set of irreducible characters of A_n . Describe the actions in the cases where n = 4 and n = 5.

Q.6 A group of order 720 has 11 conjugacy classes. Two representations of this group are known and have corresponding characters α and β . The table below gives the sizes of the conjugacy classes and the values which α and β take on them.

Prove that the group has an irreducible representation of degree 16 and write down the corresponding character on the conjugacy classes.

Q.7 The table below is a part of the character table of a finite group, with some of the rows missing. The columns are labelled by the sizes of the conjugacy classes, and $\gamma = (-1 + i\sqrt{7})/2$, $\zeta = (-1 + i\sqrt{3})/2$. Complete the character table. Describe the group in terms of generators and relations.

- **Q.8** Let x be an element of order n in a finite group G. Say, without detailed proof, why
 - (a) if χ is a character of G, then $\chi(x)$ is a sum of n-th roots of unity;
 - (b) $\tau(x)$ is real for every character τ of G if and only if x is conjugate to x^{-1} ;
 - (c) x and x^{-1} have the same number of conjugates in G.

State the orthogonality relations that hold between the rows and columns of the character table of G.

A group of order 168 has 6 conjugacy classes. Three representations of this group are known and have corresponding characters α , β and γ . The table below gives the sizes of the conjugacy classes and the values α , β and γ take on them.

Construct the character table of the group.

[You may assume, if needed, the fact that $\sqrt{7}$ is not in the field $\mathbf{Q}(\zeta)$, where ζ is a primitive 7th root of unity.]

- **Q.9** Let a finite group G act on itself by conjugation and find the character of the corresponding permutation representation. Prove that the sum of the elements in any row of the character table for G is a non-negative integer.
- **Q.10** Show that the complex character table of a finite group G is invertible when viewed as a matrix.

Prove that the number of irreducible characters of G which take only real values is equal to the number of self-inverse conjugacy classes.

[Consider the permutation action induced by complex conjugation on rows and on columns.]

Q.11 The character table obtained in Question 8 is the character table of the group $G = PSL_2(7)$ of 2×2 matrices with determinant 1 over the field \mathbf{F}_7 of seven elements modulo the scalars.

Use the character table which you have obtained to show that this group is simple.

Identify the columns corresponding to the elements x and y where x is an element of order 7 (eg the unitriangular matrix with 1 above the diagonal) and y is an element of order 3 (eg the diagonal matrix with entries 4 and 2).

The group G acts as a permutation group of degree 8 on the set of Sylow 7-subgroups (or the set of 1-dimensional subspaces of the vector space \mathbf{F}_7^2). Obtain the permutation character of this action and decompose it into irreducible characters.

Show that the group G is generated by an element of order 2 and an element of order 3 whose product has order 7.

[For the last part use the formula that the number of pairs of elements conjugate to x and y respectively, whose product is conjugate to t, equals $c \sum \chi(x)\chi(y)\chi(t^{-1})/\chi(1)$, where the sum runs over all the irreducible characters of G, and $c = |G|^2(|C_G(x)||C_G(y)||C_G(t)|)^{-1}$.]