RN (nickl@maths.cam.ac.uk)

Michaelmas 2021

Probability and Measure 3

4.1. Let $(f_n : n \in \mathbb{N})$ be a sequence of integrable functions and suppose that $f_n \to f$ a.e. for some integrable function f. Show that, if $||f_n||_1 \to ||f||_1$, then $||f_n - f||_1 \to 0$.

4.2. Let X be a random variable and let $1 \le p < \infty$. Show that, if $X \in L^p(\mathbb{P})$, then $\mathbb{P}(|X| \ge \lambda) = O(\lambda^{-p})$ as $\lambda \to \infty$. Prove the identity

$$\mathbb{E}(|X|^p) = \int_0^\infty p\lambda^{p-1} \mathbb{P}(|X| \ge \lambda) d\lambda$$

and deduce that, for all q > p, if $\mathbb{P}(|X| \ge \lambda) = O(\lambda^{-q})$ as $\lambda \to \infty$, then $X \in L^p(\mathbb{P})$.

4.3. Give a simple proof of Schwarz' inequality $||fg||_1 \le ||f||_2 ||g||_2$ for measurable functions f and g.

4.4. Show that $||XY||_1 = ||X||_1 ||Y||_1$ for independent random variables X and Y. Show further that, if X and Y are also integrable, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

4.5. A stepfunction $f : \mathbb{R} \to \mathbb{R}$ is any finite linear combination of indicator functions of finite intervals. Show that the set of stepfunctions \mathcal{I} is dense in $L^p(\mathbb{R})$ for all $p \in [1, \infty)$: that is, for all $f \in L^p(\mathbb{R})$ and all $\varepsilon > 0$ there exists $g \in \mathcal{I}$ such that $||f - g||_p < \varepsilon$. Deduce that the set of continuous functions of compact support is also dense in $L^p(\mathbb{R})$ for all $p \in [1, \infty)$.

4.6. Let $(X_n : n \in \mathbb{N})$ be an identically distributed sequence in $L^2(\mathbb{P})$. Show that $n\mathbb{P}(|X_1| > \varepsilon\sqrt{n}) \to 0$ as $n \to \infty$, for all $\varepsilon > 0$. Deduce that $n^{-1/2} \max_{k < n} |X_k| \to 0$ in probability.

5.1. Let (E, \mathcal{E}, μ) be a measure space and let $V_1 \leq V_2 \leq \ldots$ be an increasing sequence of closed subspaces of $L^2 = L^2(E, \mathcal{E}, \mu)$ for $f \in L^2$, denote by f_n the orthogonal projection of f on V_n . Show that f_n converges in L^2 .

5.2. Let $X = (X_1, \ldots, X_n)$ be a random variable, with all components in $L^2(\mathbb{P})$. The covariance matrix $\operatorname{var}(X) = (c_{ij} : 1 \le i, j \le n)$ of X is defined by $c_{ij} = \operatorname{cov}(X_i, X_j)$. Show that $\operatorname{var}(X)$ is a non-negative definite matrix.

6.1. Find a uniformly integrable sequence of random variables $(X_n : n \in \mathbb{N})$ such that both $X_n \to 0$ a.s. and $\mathbb{E}(\sup_n |X_n|) = \infty$.

6.2. Let $(X_n : n \in \mathbb{N})$ be an identically distributed sequence in $L^2(\mathbb{P})$. Show that

$$\mathbb{E}(\max_{k < n} |X_k|) / \sqrt{n} \to 0 \quad \text{as} \quad n \to \infty.$$

7.1. Let $u, v \in L^1(\mathbb{R}^d)$ and define $f : \mathbb{R}^d \to \mathbb{C}$ by f(x) = u(x) + iv(x). Set

$$\int_{\mathbb{R}^d} f(x) dx = \int_{\mathbb{R}^d} u(x) dx + i \int_{\mathbb{R}^d} v(x) dx.$$

Show that, for all $y \in \mathbb{R}^d$, we have

$$\int_{\mathbb{R}^d} f(x-y) dx = \int_{\mathbb{R}^d} f(x) dx = \int_{\mathbb{R}^d} f(-x) dx$$

and show that

$$\left|\int_{\mathbb{R}^d} f(x) dx\right| \leq \int_{\mathbb{R}^d} |f(x)| dx.$$

7.2. Show that the Fourier transform of a finite Borel measure on \mathbb{R}^d is a bounded continuous function.

7.3. Determine which of the following distributions on \mathbb{R} have an integrable characteristic function: $N(\mu, \sigma^2)$, Bin(N, p), $Poisson(\lambda)$, U[0, 1].

7.4. For a finite Borel measure μ on the line show that, if $\int |x|^k d\mu(x) < \infty$, then the Fourier transform $\hat{\mu}$ of μ has a kth continuous derivative, which at 0 is given by

$$\hat{\mu}^{(k)}(0) = i^k \int x^k d\mu(x).$$

7.5. Define a function ψ on \mathbb{R} by setting $\psi(x) = C \exp\{-(1-x^2)^{-1}\}$ for |x| < 1 and $\psi(x) = 0$ otherwise, where C is a constant chosen so that $\int_{\mathbb{R}} \psi(x) dx = 1$. For $f \in L^1(\mathbb{R})$ of compact support, show that $f * \psi$ is C^{∞} and of compact support.

7.6. (i) Show that for any real numbers a, b one has $\int_a^b e^{itx} dx \to 0$ as $|t| \to \infty$.

(ii) Show that, for any $f \in L^1(\mathbb{R})$, the Fourier transform

$$\hat{f}(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$

tends to 0 as $|t| \to \infty$. This is the *Riemann–Lebesgue Lemma*.

(iii)* Show that the image of $L^1(\mathbb{R})$ under the Fourier transform is a *proper* subset of the space $C_0(\mathbb{R})$ of bounded continuous functions that vanish at infinity. [Hint: Use the *open mapping theorem* from linear analysis.]

7.7. Say that $f \in L^2(\mathbb{R})$ is L^2 -differentiable with L^2 -derivative Df if

$$\|\tau_h f - f - hDf\|_2/h \to 0 \text{ as } h \to 0,$$

where $\tau_h f(x) = f(x+h)$. Show that the function $f(x) = \max(1-|x|,0)$ is L^2 -differentiable and find its L^2 -derivative.

Suppose that $f \in L^1 \cap L^2$ is L^2 -differentiable. Show that $u\hat{f}(u) \in L^2$. Deduce that f has a continuous version and that $||f||_{\infty} \leq C||(1+|u|)\hat{f}(u)||_2$ for some absolute constant $C < \infty$, to be determined. This is a simple example of a Sobolev inequality.