Probability and Measure 3

4.1. Let $\left(f_{n}: n \in \mathbb{N}\right)$ be a sequence of integrable functions and suppose that $f_{n} \rightarrow f$ a.e. for some integrable function f. Show that, if $\left\|f_{n}\right\|_{1} \rightarrow\|f\|_{1}$, then $\left\|f_{n}-f\right\|_{1} \rightarrow 0$.
4.2. Let X be a random variable and let $1 \leq p<\infty$. Show that, if $X \in L^{p}(\mathbb{P})$, then $\mathbb{P}(|X| \geq \lambda)=$ $O\left(\lambda^{-p}\right)$ as $\lambda \rightarrow \infty$. Prove the identity

$$
\mathbb{E}\left(|X|^{p}\right)=\int_{0}^{\infty} p \lambda^{p-1} \mathbb{P}(|X| \geq \lambda) d \lambda
$$

and deduce that, for all $q>p$, if $\mathbb{P}(|X| \geq \lambda)=O\left(\lambda^{-q}\right)$ as $\lambda \rightarrow \infty$, then $X \in L^{p}(\mathbb{P})$.
4.3. Give a simple proof of Schwarz' inequality $\|f g\|_{1} \leq\|f\|_{2}\|g\|_{2}$ for measurable functions f and g.
4.4. Show that $\|X Y\|_{1}=\|X\|_{1}\|Y\|_{1}$ for independent random variables X and Y. Show further that, if X and Y are also integrable, then $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$.
4.5. A stepfunction $f: \mathbb{R} \rightarrow \mathbb{R}$ is any finite linear combination of indicator functions of finite intervals. Show that the set of stepfunctions \mathcal{I} is dense in $L^{p}(\mathbb{R})$ for all $p \in[1, \infty)$: that is, for all $f \in L^{p}(\mathbb{R})$ and all $\varepsilon>0$ there exists $g \in \mathcal{I}$ such that $\|f-g\|_{p}<\varepsilon$. Deduce that the set of continuous functions of compact support is also dense in $L^{p}(\mathbb{R})$ for all $p \in[1, \infty)$.
4.6. Let $\left(X_{n}: n \in \mathbb{N}\right)$ be an identically distributed sequence in $L^{2}(\mathbb{P})$. Show that $n \mathbb{P}\left(\left|X_{1}\right|>\right.$ $\varepsilon \sqrt{n}) \rightarrow 0$ as $n \rightarrow \infty$, for all $\varepsilon>0$. Deduce that $n^{-1 / 2} \max _{k \leq n}\left|X_{k}\right| \rightarrow 0$ in probability.
5.1. Let (E, \mathcal{E}, μ) be a measure space and let $V_{1} \leq V_{2} \leq \ldots$ be an increasing sequence of closed subspaces of $L^{2}=L^{2}(E, \mathcal{E}, \mu)$ for $f \in L^{2}$, denote by f_{n} the orthogonal projection of f on V_{n}. Show that f_{n} converges in L^{2}.
5.2. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random variable, with all components in $L^{2}(\mathbb{P})$. The covariance matrix $\operatorname{var}(X)=\left(c_{i j}: 1 \leq i, j \leq n\right)$ of X is defined by $c_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$. Show that $\operatorname{var}(X)$ is a non-negative definite matrix.
6.1. Find a uniformly integrable sequence of random variables ($X_{n}: n \in \mathbb{N}$) such that both $X_{n} \rightarrow 0$ a.s. and $\mathbb{E}\left(\sup _{n}\left|X_{n}\right|\right)=\infty$.
6.2. Let $\left(X_{n}: n \in \mathbb{N}\right)$ be an identically distributed sequence in $L^{2}(\mathbb{P})$. Show that

$$
\mathbb{E}\left(\max _{k \leq n}\left|X_{k}\right|\right) / \sqrt{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

7.1. Let $u, v \in L^{1}\left(\mathbb{R}^{d}\right)$ and define $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ by $f(x)=u(x)+i v(x)$. Set

$$
\int_{\mathbb{R}^{d}} f(x) d x=\int_{\mathbb{R}^{d}} u(x) d x+i \int_{\mathbb{R}^{d}} v(x) d x
$$

Show that, for all $y \in \mathbb{R}^{d}$, we have

$$
\int_{\mathbb{R}^{d}} f(x-y) d x=\int_{\mathbb{R}^{d}} f(x) d x=\int_{\mathbb{R}^{d}} f(-x) d x
$$

and show that

$$
\left|\int_{\mathbb{R}^{d}} f(x) d x\right| \leq \int_{\mathbb{R}^{d}}|f(x)| d x .
$$

7.2. Show that the Fourier transform of a finite Borel measure on \mathbb{R}^{d} is a bounded continuous function.
7.3. Determine which of the following distributions on \mathbb{R} have an integrable characteristic function: $\mathrm{N}\left(\mu, \sigma^{2}\right), \operatorname{Bin}(N, p), \operatorname{Poisson}(\lambda), \mathrm{U}[0,1]$.
7.4. For a finite Borel measure μ on the line show that, if $\int|x|^{k} d \mu(x)<\infty$, then the Fourier transform $\hat{\mu}$ of μ has a k th continuous derivative, which at 0 is given by

$$
\hat{\mu}^{(k)}(0)=i^{k} \int x^{k} d \mu(x)
$$

7.5. Define a function ψ on \mathbb{R} by setting $\psi(x)=C \exp \left\{-\left(1-x^{2}\right)^{-1}\right\}$ for $|x|<1$ and $\psi(x)=0$ otherwise, where C is a constant chosen so that $\int_{\mathbb{R}} \psi(x) d x=1$. For $f \in L^{1}(\mathbb{R})$ of compact support, show that $f * \psi$ is C^{∞} and of compact support.
7.6. (i) Show that for any real numbers a, b one has $\int_{a}^{b} e^{i t x} d x \rightarrow 0$ as $|t| \rightarrow \infty$.
(ii) Show that, for any $f \in L^{1}(\mathbb{R})$, the Fourier transform

$$
\hat{f}(t)=\int_{-\infty}^{\infty} e^{i t x} f(x) d x
$$

tends to 0 as $|t| \rightarrow \infty$. This is the Riemann-Lebesgue Lemma.
7.7. Say that $f \in L^{2}(\mathbb{R})$ is L^{2}-differentiable with L^{2}-derivative $D f$ if

$$
\left\|\tau_{h} f-f-h D f\right\|_{2} / h \rightarrow 0 \quad \text { as } \quad h \rightarrow 0,
$$

where $\tau_{h} f(x)=f(x+h)$. Show that the function $f(x)=\max (1-|x|, 0)$ is L^{2}-differentiable and find its L^{2}-derivative.

Suppose that $f \in L^{1} \cap L^{2}$ is L^{2}-differentiable. Show that $u \hat{f}(u) \in L^{2}$. Deduce that f has a continuous version and that $\|f\|_{\infty} \leq C\|(1+|u|) \hat{f}(u)\|_{2}$ for some absolute constant $C<\infty$, to be determined. This is a simple example of a Sobolev inequality.

