PROBABILITY AND MEASURE, LECTURES NOTES
MICHAELMAS 2019-2020, E. BREUILLARD

Lecture 1

0. PLAN FOR THE COURSE

Useful material for the course include:

e Lecture notes by James Norris available on the course’s website.

e the course syllabus approved by the Faculty Board (notice the asterisques
signaling non-examinable material). Note that although we will follow the syl-
labus very closely, the material will not be presented in the order suggested in the
“schedule” booklet: most importantly we first construct the Lebesgue measure (by
hand directly on RY) and only then abstract Lebesgue’s theory to handle arbitrary
measure spaces (rather than present the abstract Carathéodory theorem first, as
suggested in the schedule (last revised in 1991...), then specialize to the case of
Lebesgue measure on R and wait until the existence of product measures is finally
proved in order to define Lebesgue measure on RY).

e apart from the books listed in the syllabus, for the measure theory part of
the course I would recommend: T. Tao’s “An introduction to measure theory” as
well as W. Rudin’s classic “Real and Complex analysis”. Have a look at Halmos’s
“Measure theory” as well, another classic. For the Ergodic Theory bit at the end,
take a look at Einsiedler and Ward.

e a related Part II course is “Linear analysis”; following it is not mandatory, but
it can be helpful to understand some of the concepts from a different perspective.
A recommended follow-up to this course is the D-course “Analysis of functions”.

A rough plan for the course is as follows:

Week 1 Lebesgue measure

Week 2 Abstract measure theory

Week 3 Integration

Week 4 Measure theoretic foundations of probability theory
Week 5 Modes of convergence of random variables

Week 6 LP spaces, Hilbert space techniques.

Week 7 Fourier transform, gaussian laws, Central Limit Theorem
Week 8 Ergodic theory

The notes below are essentially a write-up of the actual lectures, meant to help
the student revise her or his own notes. Occasionally there are some further dis-
cussion and explanation as well as few additional remarks that could not be given
during the lectures.

1. BOOLEAN ALGEBRAS AND FINITELY ADDITIVE MEASURES

Let X be a set.
Definition 1.1. A Boolean algebra on X is a family B of subsets of X which

(i) contains &
(ii) is stable under finite union and under complementation.
1
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Note that obviously these assumptions imply that X € B and that B is also stable
under finite intersection A n B, set difference A\B, symmetric difference AAB.
Examples:

(1) the trivial Boolean algebra B = {@, X}

(2) the discrete Boolean algebra B = 2% = the family of all subsets of X.

(3) If X is a topological space B = the family of constructible sets, that is finite
unions of locally closed subsets (recall that a locally closed subset is one of
the form O n F', where O is open and F is closed).

Definition 1.2. A finitely additive measure (or mean) on (X,B) is a function
m : B — [0, 4] such that

(i) m(&) =0
(ii) m(EUF)=m(E)+m(F)if EnF =9, and E,F € B.

Note that a finitely additive measure is also sub-additive, namely m(E u F) <
m(E) +m(F) for all E, F' € B, and monotone: if E < F, then m(E) < m(F).

Examples:

(1) if X is any set and B = 2% is the discrete Boolean algebra, set m(E) = #E,
the number of elements in ' ¢ X, is called the counting measure on X.

(2) more generally if f: X — [0,400] is a function, then m(E) := > _p f(e)
is a finitely additive measure.

(3) If X = ||, X; is a finite partition of X and B is the Boolean algebra it
generates (i.e. subsets in B are unions of X;’s), if we assign weights a; > 0
to each X;, we can set m(E) := X, v —pa; and get this way a finitely
additive measure on (X, B).

2. JORDAN MEASURE ON R?

This is a notion defined by Camille Jordan in the 19th century. Of course the
idea that one can compute the volume of a body by counting the number of small
cubes needed to approximate it within a reasonable error goes back (at least) to
Archimedes. The Jordan measure is an early attempt to formalise this idea. It
will be one of the aims of the course to explain how this first attempt has been
surpassed in the 20th century by the advent of Lebesgue measure and its subsequent
generalisation to abstract measure spaces that forms Measure Theory. So let us first
have a look at this notion.

Definition 2.1. A subset of R is called elementary if it is a finite union of boxes
B =1 x---x 1y, where I; is a finite interval of R.

Recall that a finite interval of R has the form [a,b] or (a,b) or (a,b] or [a,b) for
some reals a < b. Given a box B we can define its volume |B| by setting

d

1Bl =] [la: — bil

i=1
if B=1I3 x---x Iy, and (a;,b;) < I; < [a;,b;] for each i.
Proposition 2.2. Let B = I; x --- x I; = R? be a box as above and E(B) the

family of all elementary subsets of B. Then

(a) E(B) is a Boolean algebra,
(b) every E € E(B) is a finite union of disjoint bozxes,
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(c¢) if E € E(B) is written in two different ways as a finite union of disjoint bozes,

i.e.
N N’
!
E=||Bi=]]B]
i=1 -1
then
N N’
D1IBil = > |Bj]
i=1 j=1

Proof sketch. It helps to first convince oneself that this is true in dimension d = 1.
The general case isn’t that much harder. Clearly the intersection of two boxes is
a box and if By < By are boxes, then By;\Bj is a finite union of disjoint boxes.
(a) follows. And (b) also, by induction on the number of boxes whose union is E.
(c) too is pretty obvious: writing £ = | |, ; B; n B} it is enough to prove it for
one box, say F = By = I; x --- x I3, and this case is easily checked by refining
the partition (Bj); into a grid partition of smaller boxes whose sides are arbitrary
pieces of the partition of each I; formed by the projections of the B;-’s onto the i-th
coordinate. O

Proposition-Definition 2.3. We may set
N
m(E):= Y |B|
i=1

for each E € E(B) of the form E = |_|f\i1 B; a disjoint union of boxes. Then m
defines a finitely additive measure on the Boolean algebra (B,E(B)).

Proof. Tt is well-defined and finitely additive by (c) of Proposition 2.2. O

Definition 2.4. A subset A = R? is called Jordan measurable if for all ¢ > 0 there
exist elementary subsets E, F with E < A c F such that

m(F\E) < e.

Remark 2.5. Equivalently A is Jordan measurable if for each € > 0 there is a
finite union of boxes F' = Ufil B; containing A, such that F\ A is contained in an
elementary set of measure < €.

Remark 2.6. Jordan measurable subsets of R? are bounded (because so are ele-
mentary subsets).

Exercise/Example: If f:[0,1] — R is a continuous function, then the subgraph
{(z,y) eR%, 2 €[0,1],0 <y < f(z)} is Jordan measurable (thanks are due to Erik
Ma for catching a mistake in the formulation of that example in an earlier version
of these notes!)

Definition 2.7. If A = R? is Jordan measurable, we may define its measure m(A)
by
m(A) = inf{m(F), A c F, F elementary}.

Note that m(A) is also equal to sup{m(F), A o E, E elementary}, because by
the defining property of Jordan measurability, for every € > 0 there are elementary
sets B, F with E ¢ A < F and m(F\E) < . And by finite additivity of m, we
have m(E) = m(F) — m(F\E) = m(A4) —e.

Proposition 2.8. If B c R? is a box, then the class J(B) of Jordan measur-
able subsets of B forms a Boolean algebra and m is a finitely additive measure on

(B, J(B))-
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Proof. Tt is immediate from the definition that J(B) is stable under complemen-
tation. It is also clear that it is stable under finite unions. So we have a Boolean
algebra. To see that it is finitely additive, i.e. m(A u A’) = m(A) + m(A’) if A, A’
are disjoint in J(B), use the previous remark to find for each ¢ > 0 elementary
sets E ¢ A and E' < A’ with m(E) = m(A) — e and m(E’) = m(A’) — e. Clearly
E and E' are disjoint, so m(E v E') = m(E) + m(E’) = m(A) + m(A’) —e. This
yields m(A u A") = m(A) + m(A’) and the reverse inequality is clear by definition
of m. O

The notions of Jordan measurability for sets and Riemann integrability for func-
tions are tightly connected. In the example sheet, you will find the following

Exercise: Given a finite interval [a,b] of R, a subset E < [a, b] is Jordan measur-
able if and only if the indicator funtion 1g(z) is Riemann integrable.
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Lecture 2

3. LEBESGUE MEASURABLE SETS

There are some issues with the Jordan measure:

(i) unbounded sets in R? are not Jordan measurable.

(ii) many simple minded bounded sets are not Jordan measurable, e.g. A :=
QnJ[0, 1] is not Jordan measurable (indeed if E ¢ A ¢ F with E, F elementary,
then E must be finite and F must contain [0,1], so m(F\E) = 1).

(iii) as hinted in the exercise above, the integration theory associated to the notion
of Jordan measurability is the good old notion of Riemann integrability. This
has well-known shortcomings, for example pointwise limits of Riemann inte-
grable functions are not necessarily Riemann integrable, e.g. 1jg 1y 1z = fn
has f,, — f := lgn[o,1] pPointwise, and the f,’s are Riemann integrable, while
f isn’t. By the same token, an infinite series of Riemann integrable functions
may not be Riemann integrable, which was a major problem in the theory of
Fourier series.

For all these reasons mathematicians at the end of the 19th century looked for
another definition of measurability for subsets of R? (and integrability for functions
on RY) that would be more robust and give a sound basis to Analysis, which was
until then mostly confined to continuous functions. This is what Henri Lebesgue
achieved in 1901. His main idea: allow countable unions of boxes in Jordan’s
definition.

Definition 3.1. For any subset E — R? we can define its Lebesque outer-measure
as

m*(E) := inf{ )| |By|,E < | J Bn, By a box in R},

n=1 n=1

Here | B| is the volume of a box (i.e. the product of side lengths) as in the previous
lecture. Note that m* is translation invariant, namely m*(E + z) = m*(E) for any
subset E c R? and any z € R?.

Definition 3.2. A subset E — R? is called Lebesque measurable if for all € > 0
there is C' := | J,, Bn a countable union of boxes By,’s, such that E < C' and

m*(C\E) < e.

Note that the family L is clearly invariant under translation: i.e. of E € £ then
E + z € L for every x € R%. Clearly it also scales naturally: m*(\E) = \m*(E)
for all A € (0, +00).

Remark 3.3. In the above definitions, we may always assume that the boxes are
open (i.e. Cartesian products of d open intervals (a;,b;)). Indeed we can always
change B,, = Hf[ai, b;] into the slightly bigger B!, := ]_[il(ai —€n,b; +¢€y). This
will only affect the volume of each ball by a small amount: |B.| < |B,| + 27" if
€p is chosen small enough and e > 0 is fixed but arbitrary, hence also the total sum
will be > |B;| < e+, |By| and this will not change the definition of m*.

Remark 3.4. Note that every Jordan measurable set is clearly Lebesgue measur-
able.

The main proposition today is:

Proposition 3.5. (a) m* extends m, namely m*(E) = m(E) if E is Jordan mea-
surable.

(b) The family L of Lebesgue measurable subsets of R? forms a Boolean algebra
stable under countable unions.
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(c) m* is countably additive on (R%, L).
Countably additive means that m*(|J,,~, £n) = 2.,,=; m*(E,) for every count-

n=1-"—"n
able (i.e. finite or countably infinite) family {E,}, of pairwise disjoints subsets
from L.
From (b) we see that for example Q is a Lebesgue measurable subset of R and
so is Q n [0,1]. When restricted to the class £ of Lebesgue measurable sets the

outer-measure m* is called the Lebesgue measure.

Not every subset of R? is Lebesgue measurable (we will see an example shortly,
assuming the axiom of choice). By the same token, we’ll also see that m* is not
even finitely additive on all subsets of R%.

Remark 3.6. This remark can be skipped. There is an apparent asymmetry in
our definition of a Lebesgue measurable set in that we only approximate the set
E from above by a union of boxes and not also from below as in the original
definition of Jordan measurability. Our definition of Lebesgue measurability is
the exact analogue of the equivalent definition of Jordan measurability given in
Remark 2.5 from the last lecture. If we were to also approximate from below
by a countable union of boxes we would run into trouble: for example there are
closed subsets of [0, 1] (hence Lebesgue measurable as we shall see) that have empty
interior and positive Lebesgue measure (such as some Cantor sets, cf. the example
sheet), clearly those cannot be approximated from below by unions of boxes. This
asymmetry is responsible for the fact that, with our definition, it is not obvious
that the complement of a Lebesgue measurable set is again Lebesgue measurable
and we will have to work a bit to establish it.

It will take some time to prove Proposition 3.5 in full. Today we’ll prove (a).
Next time we’ll prove that open and closed sets are in £, and then establish that
L is stable under complementation, and finally prove (b) and (c). Actually the
hardest part of the proof of Proposition 3.5 will be to show that m™* is finitely
additive. First we give some basic properties of m™.

Lemma 3.7. The set function m* is
(i) monotone, i.e. A < B implies m*(A) < m*(B),
(ii) countably sub-additive, i.e. for any countable family {A,}, of subsets of RY,

m*(U Ap) < Z m*(Ay).

n=1 n=1

Proof. (i) is obvious and (ii) is pretty clear as well. Indeed pick € > 0 and let C,, :=
U¢>1 B, ; be a countable union of boxes such that A, < C, and Zi;l |Bn,i| <
m*(Ay) +¢/2". Then |J,, An < U,,Cn = Um B,,,; and

m*((J An) <D IBuil < ), m*(An) +2/2" = e+ ), m*(An),
n=1 n,t n=1 n>=1

and since € is arbitrary we get:

as desired. O

Now we make the following remark: assertions (a) and (c) of Proposition 3.5
clearly imply that the Jordan measure m is countably additive on Jordan measur-
able sets. In particular, if (E,),>1 is a decreasing sequence of elementary sets with
empty intersection, then

m(El) = Z m(En\En-H)

n=1
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SO
N-1

0=m(Ey)— lim Py (m(En) = m(Ep41)) =  lim m(En)
This last property is known as the continuity property of the measure m. In fact
countable additivity is equivalent to the conjunction of finite additivity and the
continuity property (this is an Exercise in the Example sheet). So to sum up:
Proposition 3.5 implies that the Jordan measure has the continuity property on
elementary sets. Let us prove this directly, because this fact will be useful on the

way to the proof of Proposition 3.5.

Lemma 3.8. The Jordan measure has the continuity property on elementary sets,
namely if (Ep)n=1 s a non-increasing (for set inclusion, i.e. E,+1 C E,) sequence
of elementary sets with empty intersection, then

lim m(E,) = 0.

n——+0o0

Proof. The proof uses a basic topological property of R%, namely the Heine-Borel
property that bounded and closed sets are compact. We argue by contradiction.
The limit exists, because the sequence m(E,) is non-increasing, so suppose it is
positive, say > 2¢ for some ¢ > 0. Then m(F,) = 2¢ for all n. Recall that
elementary sets are finite union of boxes. Since the E,, may not be closed, we
can shrink a bit the sides of each box making E,, and find a closed elementary set
F, c E, such that m(E,\F,) < &/2" for each n > 1. Then
n
m(En\(F10.. U E,\F)) Z En\F}) Zm E\F;) < Z
i=1 1
where we used the (finite) sub-additivity of m on elementary sets. In particular
m(F1 n...n F,) > e, hence non-zero, for all n. But ﬂn F,, is empty and the F,’s
closed and bounded. Hence by Heine-Borel there is a finite N such that ﬂ]lv F, is
empty. This is a contradiction. O

We now begin the proof of Proposition 3.5 proper.

Proof of (a) in Prop. 3.5. We need to show that m* extends m, the Jordan mea-
sure, on Jordan measurable sets. Note that we’ve already checked that m(B) = |B|
in the first lecture.

First of all it is clear from the definitions that m*(A4) < m(A) for every Jordan
measurable set A.

We have to prove the reverse inequality. To begin with let us assume that A is an
elementary set. By definition of m™*, given £ > 0 there is a countable family of boxes
B,, such that A c |J,, B, and )}, |B,| <m*(A) +¢. Let B, = A\(Byu...uB,).
It is an elementary set. Moreover E,, 1 < F, and ﬂn E, = @. So Lemma 3.8
applies and we get m(E,) — 0. But

m(A) <m(A\(ByU...uBp) +m(By u...uB,) <m(E,) + Z | B;|

which implies that m(A4) < m*(A) + ¢, and hence that m(A) < m*(A) as desired.

Finally if A is an arbitrary Jordan measurable set, then by definition for each
g€ > 0 there is an elementary set E < A such that m(A4) < m(E) + . But
m(E) = m*(E) by the above, and m*(E) < m*(A) by monotonicity. Since ¢ is
arbitrary we conclude that m(A) = m*(A). O
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Lecture 3

Recall our definition of the Lebesgue outer-measure m* and of Lebesgue mea-
surable sets from the last lecture. Recall that we proved that m* coincides with the
Jordan measure m on Jordan measurable sets. Today we will complete the proof
of Proposition 3.5 by showing that the complement of a Lebesgue measurable set
is Lebesgue measurable and that m™* is countably additive. We will also discuss an
important example of non-measurable set.

We begin with the following

Proof that L is stable under countable unions. This is easy. If A = (., A, and
each A, € L, then for each € > 0 there are countable unions of boxes C,, := (J, Bn.i
with A, < C,, such that m*(C,\Ay) < ¢/2". Then | J,, C,, too is a countable union
of boxes and by sub-additivity of m* (Lemma 3.7)

m*(( JCn\A) < Zm (C\A) < Ye/2" =«

n

This shows that A e L. O

Lemma 3.9. If A=), E, is a countable intersection of elementary sets E,, with
E,i1 c E,, then A is Lebesque measurable and m(E,) — m*(A). In particular
countable intersections of elementary sets are Lebesgue measurable.

Proof. Recall that elementary sets are finite union of boxes. If A is a countable
intersection of elementary sets, say A = (| By, with E,, elementary, without loss of
generality we can assume that F,, .1 < E, (simply replace E, by E1 n...n E,).
Then A c E,, and E,\A = J,;5,, Ei\Ei+1. In particular

i=n

(En\A) < Y m*(E\Ei41) (3.1)
i=n
by sub-additivity of m*. But E;\F;,1 is elementary and we have seen that m = m™*
on elementary sets, so
Y m*(B\Ei1) = Y. m(E\Eip1) = m(Ey) — lim m(E;) < m(Ey) < +0

: ! 1——+00
i=n 1=n

In particular the right hand side in (3.1) is the remainder of a convergent series
and, hence must tend to zero as n tends to infinity. This implies that A is Lebesgue
measurable (by definition). Also note that by sub-additivity:

m*(A) < m(E,) = m*(E,) < m*(E,\A) + m*(4),
which means that m(E,) — m*(A) as n — +oo. O

Corollary 3.10. Every open and every closed subset of R® is Lebesque measurable.

Proof. Every open set is a countable union of open boxes, hence must be in £ by
stability of £ under countable unions. Now if C' = R? is closed, then C' = U, CnBy,,
where B, is the closed box [—n,n]?. So to prove that C'is in £ it is enough to assume
that C is bounded, i.e. belongs to some open box B. But then B\C' is open, hence
a countable union of boxes B,, contained in B. But B\B, is elementary. Hence
C =), B\B, is a countable intersection of elementary sets, hence in £ by the
previous lemma. O

Definition 3.11. A subset E = R? is called a null set if m*(E) = 0.

Lemma 3.12. Null sets are Lebesgue measurable.
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Proof. This is clear: given any ¢ > 0 there is a countable union of boxes C' = | J, B;
such that £ < C and ), |B;| <e. In particular

m*(C\E) < Z\B|<e
0

Proof of (b) in Prop. 3.5. We have already proved that £ is stable under countable
unions. We need to show that £ is stable under complementation. Namely given
E € £ we want to prove that E° € L. Note first that it is enough to prove that B\F
is in £ for any box B, because E° = | J,,[-n,n]?\E is a countable union of such sets
and L is stable under countable unions. By definition of Lebesgue measurability
for each n > 1 there is a countable union of boxes C),, such that £ < C,, and
m*(Cp,\E) < 1/n. But each B\C,, is a countable intersection of elementary sets,
hence by Lemma 3.9, belongs to £. So F' := |J,, B\C,, € L. Note that F' < B\E
and that (B\E)\F is a null set, because for each n we have

m*((B\E)\F) < m*((B\E)\B\C»)) < m*(Cy\E) < 1/n.
So (B\E)\F is in L by the previous lemma, and hence B\E € L. O

We can now show that we can approximate any Lebesgue measurable set by
closed sets from below and open sets from above:

Proposition 3.13. Assume that E  R? is a Lebesgue measurable subset and let
€ > 0. Then there exists a closed subset F' and an open set U such that FF < E c U
and

m*(U\F) < e.
Moreover E can be written as a disjoint union E = B\N, where B is a countable
intersection of open sets and N is a null set (and analogously E = C . M, where
M is null and C a countable union of closed sets).

Proof. For U we can take a countable union of open boxes U = [ J, B; such that
m*(U\E) < ¢/2 as given by the definition of Lebesgue measurability. Now that
we know that the complement E° is also in £, we can do the same for £E¢ and
find an open set Q o E° such that m*(Q\E°) < /2. Then set C = Q°. Clearly
O\E° = E\C and C is closed, so we are done.

Now letting e = 1/n for each n we get an open set U,, © E with m*(U,\E) < 1/n
and set B = (1), U,. Then B\E is null (apply this to E to get the analogous
statement in brackets). O

Proof of (c) in Prop. 3.5. We need to show that m* is countably additive on L.
Namely given a countable family of pairwise disjoint subsets E,, from £ we need to

show that
U E,) = Y, m*(E,).

n=1
We will prove this after a series of initial reduction steps.

(i) first reduction step: wlog we may assume that each E,, is a bounded subset of
R?. Indeed, we may decompose R? into a countable disjoint union of bounded sets
(e.g. let B, = [-n,n]? exhaust R? and write R? = | | X,,, where X,, := B, \(B; u

..UB,_1)). Then £ :=| |, E,, = |_|n’m E,nX,,, and each E, nX,, is bounded, so
if m* is countably additive on bounded sets, then for each n, m*(E, N X)) =

m*(E,) and
m*(E) = Y m*(En 0 X, Zm

m,n

m

as desired.
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(ii) second reduction step: it is enough to prove that m™* is finitely additive on
bounded sets. Indeed, if the E,,’s are pairwise disjoint and bounded, for every N
N N 0
1 1 1 n>1
where we used finite additivity on the left hand side and sub-additivity of m* on
the right hand side. Letting N tend to infinity we conclude that m* (| J}" E,) =
Zn>1 m*(Ey).

So we are left to show that m™* is finitely additive on bounded sets, or in other

words that

m*(E v F) =m*(E) + m*(F) (3.2)
whenever F, F' are disjoint bounded subsets from £. This will follow from the finite
additivity of m on elementary sets.

(iil) third reduction step: it is enough to prove (3.2) when both F and F are
countable intersections of elementary sets. Indeed, since E is bounded, I claim
that for each € > 0, there is a countable intersection of elementary sets C' such that
m*(E\C) < ¢ (this is quite clear from the definition: there is a box B containing E,
and B\ E belongs to £ (we have already shown that £ is a Boolean algebral), so there
is a countable union of boxes U = | J; B; containing B\ E such that m*(U\(B\E)) <
e. Just set C :=("),(B\(BnB;))). Now do the same for F' to get D < F a countable
intersection of elementary sets, such that m*(F\D) < e. Finally if we knew that
m*(C u D) = m*(C) + m*(D), then we would get:

m*(E)+m™*(F)—2 < m*(C)+m*(D) = m*(CuD) < m*(EVF) < m™(E)+m*(F)

so letting € — 0 we would be done.

So it all remains to prove (3.2) under the assumption that both F and F are
countable intersections of elementary sets. For this we will use Lemma 3.9. Let
E =, In and F =, Jy, with I, and J,, elementary. Without loss of generality
(replace I, by Iy n...n1I,) we may assume that I,,y1 < I,, and similarly J,, 11 < J,,.
Now observe that

EUF =\, uJy)

is also a countable intersection of elementary sets. Besides (), (I, nJ,) = EnF =
@. We know by Lemma 3.9 that m(l,), m(J,), m(I, v Jy,) and m(I, nJ,) converge
respectively to m*(E), m*(F),m*(E u F) and 0. However by finite additivity of
m on elementary sets:

m(L,) +m(J) = m(I, v J) + m(I, 0 Jy)
which implies (3.2) in the limit as n — 400. This ends the proof of Proposition
3.5(c).
O
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Lecture 4

Alright, we have now finished the proof of Proposition 3.5. Let’s sum up: we
have defined the class £ of Lebesgue measurable subsets of R%. We have shown that
it is a Boolean algebra stable under countable unions (and hence also countable
intersections!). Furthermore we have shown that the outer-measure m* (which
makes sense for arbitrary subsets of R?) is additive and even countably additive
on L. We call it the Lebesgue measure. We've also shown along the way that
null sets are Lebesgue measurable and that every open and every closed subset
of R? is Lebesgue measurable and actually every Lebesgue measurable set can be
“approximated” (up to sets of arbitrarily small measure) from below by a closed
subset and from above by an open subset. So one may wonder: is every subset of
R? Lebesgue measurable? Well, assuming the axiom of choice (which is something
the overwhelming majority of mathematicians are willing to do), we will construct
a counter-example, i.e. a non-measurable subset. This example was found by
Guiseppe Vitali in the wake of Lebesgue’s discovery.

Vitali’s counter-example. We are going to construct a subset of R, which is not
Lebesgue measurable. The idea is to consider a set of representatives of the cosets
of the additive group of Q inside R. We could use any countable dense subgroup
of R in place of Q, but let’s use Q as Vitali did to make it more concrete. We also
restrict to [0, 1] for definiteness.

So let E < [0,1] be a set of representatives of (Q,+) in (R, +), namely in each
coset = + Q we pick an element lying in [0,1]. So E is such that for every x € R
there is a unique e € E such that x —e € Q. Of course it is the axiom of choice that
allows us to assert that E is indeed a subset of R.

Claim 1. m* is not (finitely) additive on the family of all subsets of R?.

Claim 2. F is not Lebesgue measurable.

Proof. Note that, by construction, if r,...,7y are N pairwise distinct rational
numbers, then the subsets r; + E for i = 1,..., N are pairwise disjoint. So if m*
were finitely additive on the Boolean algebra of all subsets of R, then we could

write:
N

N
m*((J(rs + B)) = Y m*(ri + E) = Nm*(E) (3.3)
1 1
where we use the fact (this is clear, as we’ve already observed) that m* is translation
invariant. But if we assume that the r;’s belong to [0, 1] say, then r; + E < [0, 2]
and so by monotonicity of m* we would get:

Nm*(E) <m*([0,2]) = m([0,2]) = 2
because we’ve already proved that m* = m on elementary sets. Letting N tend to
+00 this would mean that
m*(E) = 0.
However by construction [0, 1] < [ J,q(£+7) and hence, by countable sub-additivity
of m* we would get:

1=m*([0,1]) < Y m*(E+1r) =0
reQ
clearly a contradiction. This concludes the proof of Claim 1.

To see that E ¢ L simply argue that otherwise E +r € L for each r € Q and thus
(3.3) would be legitimate because we’ve shown (Prop. 3.5) that m* is additive on
L. This would yield m*(E) = 0 as above and lead to the same contradiction. This
proves Claim 2.
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O

Remark 3.14. Note that the Vitali set £ must have positive outer measure, i.e.
m*(E) > 0 because null sets are Lebesgue measurable. Someone asked in class
whether there are non-Lebesgue measurable sets of arbitrary (non-zero) measure.
The answer is clearly yes, because given some scaling factor A > 0, F is not in £
if and only AFE is not in £, while m*(AE) = Am*(FE) can clearly achieve any value
as \ varies. In fact, A\E will be a Vitali set for the dense additive subgroup A~'Q.

A logical aside: the axiom of choice is independent of the Zermelo-Frenkel axioms
that form the foundation of most mathematics today. This means that neither it
nor its negation can be proven assuming only the ZF axioms. This was a major
result of 20th century Logic obtained by Kurt Godel and Paul Cohen. In the 1970’s
the logician Robert Solovay went further to show that one can construct models of
the real numbers in ZF in which all subsets of R are Lebesgue measurable.

4. ABSTRACT MEASURE THEORY

Now that we’ve understood the construction of the Lebesgue measure, we are ripe
to lay the foundation of abstract measure theory. In the early 20-th century, after
Lebesgue’s ideas became widespread and accepted (despite some initial criticism)
by most mathematicians, people started to understand that they were much more
general, that Lebesgue’s construction could be made to work in the abstract, not
just on R? but on any set, even without a topology. Even though Lebesgue himself
seemed to have been somewhat reluctant to generalisations, it was soon recognized
by people such as Felix Hausdorff, Constantin Carathéodory or Maurice Fréchet,
that one could gain a lot from such a point of view. Later developments, such as
Kolmogorov’s axiomatic approach to probability theory, proved them right.

Let X be a set.

Definition 4.1. A o-algebra on a set X is a Boolean algebra of subsets of X, which
is stable under countable unions.

Note that (taking complements) it is clearly also stable under countable inter-
sections. (the letter o is for “countable”, it’s widespread notation, I don’t know the
rationale behind it).

Definition 4.2. A measurable space is a couple (X, A), where X is a set and A a
o-algebra on X.

Definition 4.3. A measure on (X, A) is a map p: A — [0, +00] such that

(1) p(2) =0
(i) p is countably additive, i.e.

w(L] Bn) = D) w(En)

if the E,’s are in A and pairwise disjoint.

A triple (X, A, ) is then called a measure space.

Examples

(1) (R, L, m), where m is the Lebesgue measure, is a measure space (this is
content of Proposition 3.5).

(2) If Ag € £ then mo(E) := m(Ag n E) defines another measure on (R?, £).

(3) (X,2%,#) is a measure space (where 2% is the discrete Boolean algebra
and # counting measure).
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(4) pick a sequence (a,),>1 of non-negative real numbers, then (N,2N, ) is a
measure space, where p(I) = >._; a; defines the measure for every subset
IcN.

iel

Proposition 4.4. Let (X, A, u) be a measure space.

(a) w is monotone, i.e. for A< B in B we have u(A) < u(B).

(b) p is countably sub-additive, i.e. ji(|J,>, En) < 251 #(En) for every sequence
of sets E,, € A.

(c¢) We have upward monotone convergence, i.e. if By € Es ... c E, C ... are
all in A, then

p(JEBn) = lim pu(E,) = sup p(En,).

n—+00 n>1

(d) and downward monotone convergence, i.e. if By D Fs O ... > E, D... are all
in A, and if p(Fy) < o0, then

() En) = lim p(E,) = inf u(E,).

n—+o0 n=1

Caveat: note the extra condition in (d): it is necessary to assume that u(F) < co.
On the real line with Lebesgue measure, you could take for instance E,, = [n, +00)
and see that m(E,) = +oo for all n, while (), E,, is empty.

Proof. (a) write p(B) = p(B\A) + p(A).
(b) write |JE, = || Fn, where F,, = E,\(E1 U ... U E,_1), so u(J, En) =
2 H(Fn) < X p(En).
(c) set Ey = @. Write | J E,, = || F,, as in (b). We have:
N N
ZN(Fn) = ZN(ETL) — W(En-1) = p(EN)
1 1
and by countable additivity of u, we have u(|J E,) = 3, u(Fn), so letting N — +c0
we get what we wanted.
(d) Apply (c) to Eq\E,,.

8 O

Definition 4.5. Let (X, A, n) be a measure space. It is called finite if p(X)
and o-finite if there is a countable sequence E, of subsets from A such that
U, En and p(E,) < o0 for all n.

<
X

Example (R?, £,m) is o-finite but not finite.

Definition 4.6. A measure space (X, A, p) is called a probability space and u a
probability measure if 1(X) = 1.

Proposition-Definition 4.7. If F is a family of subsets of X, then the intersec-
tion of all o-algebras containing F is a o-algebra, called the o-algebra generated by F
and denoted by o(F).

Proof. This is an easy check, see the Example sheet. O

Example

(1) X = [_HV X; is a finite partition of X and F = {X1,...,Xn}, then o(F)
is the family of all unions of X;’s. It is the Boolean algebra generated by
F.

(2) if X is a countable set, F the family of singletons (i.e. one-element subsets),
then o(F) = 2% the discrete Boolean algebra on X.

Now comes a very important definition.
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Definition 4.8. Suppose that X is a topological space (i.e. a set endowed with a
collection of “open sets” that forms a topology). The o-algebra generated by all open
subsets is called the Borel o-algebra of X and is denoted by B(X). Its elements are
called Borel sets.

Remark 4.9. We've shown that every open set is Lebesgue measurable and that £
is a o-algebra, so this means that B(R?) is contained in L, i.e. every Borel subset of
R? is Lebesgue measurable. It is not very difficult to prove (see a course in Logic)
that there are Lebesgue measurable sets that are not Borel. In fact the cardinal of
B(R?) is strictly smaller than the cardinal of £. The reason behind it is that every
subset of a null set is null and hence Lebesgue measurable, while there it is not
necessarily Borel. This gives at least 92 ® Lebesgue measurable sets, but there
are at most 2°2"4R Borel sets.

Proposition 4.10. Let X = R?, then B(X) < L and moreover, every A € L can
be written as a disjoint union A = B u N, where B € B(X) and N is a null set.

Proof. We have already proved these facts in Proposition 3.13 above (note that
every closed set is Borel and so is every countable union of closed sets). O

Remark 4.11. The o-algebra of Borel sets of a topological space X is usually much
larger than the family of constructible sets (i.e. the Boolean algebra generated by
open sets). More generally, if F is any family of subsets of a set X, then the Boolean
algebra B(F) generated by F can be explicitly described: the elements of 5(F) are
all finite unions of the subsets of the form

Fin...nF,

where for each i = 1,..., n either F; or its complement Ff lies in F (see the Example
Sheet). This is notoriously not so for o(F). The process of taking alternatively
countable unions and countable intersections ad libitum does not stabilize in finitely
many steps: this leads to the notion of Borel hierarchy and a full description of
B(X) requires transfinite induction. See a Logic and Set Theory course.

Definition 4.12 (Borel measure). A Borel measure on a topological space X is a
measure on Borel o-algebra of X.
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Lecture 5

We now come to the construction of measures on o-algebras. As we have seen in
the construction of the Lebesgue measure, it is often easy to build a finitely additive
measure on a natural Boolean algebra (e.g. the Jordan measure on elementary
subsets of a box) and it is then a goal to extend this measure to the induced o-
algebra and hope to get this way a countably additive measure on a larger class of
sets. This is what we did to build the Lebesgue measure on Lebesgue measurable
sets. It turns out that this idea can be performed in exactly the same way in
complete generality in the setting of abstract measure spaces.

Let X be a set, B a Boolean algebra of subsets of X and p a finitely additive
measure on B (i.e. a finitely additive non-negative set function defined on B).

Definition 4.13. Say that p has the continuity property if for any non-increasing
sequence of sets E, € B with empty intersection such that u(E7) < o0, we have

Lt (En) =0

We've already see (in Proposition 4.4) that if B is a o-algebra and p a genuine
measure (i.e. countably additive) on B, then p has the continuity property. So the
continuity property is a necessary condition on p for it to ever admit a possible
extension to a genuine measure on the o-algebra generated by B. The content of
the following theorem is that it is actually also sufficient.

Theorem 4.14. (Carathéodory extension theorem) Let X be a set, B a Boolean
algebra of subsets of X and p a o-finite finitely additive measure on B with the
continuity property. Then u extends uniquely to a measure u* on the o-algebra
o(B) generated by B.

This is also sometimes called the Hahn-Kolmogorov extension theorem (but this
attribution is probably not quite right, because Kolmogorov himself attributes it
to Caratheodory in his book, and there is another Kolmogorov extension theorem
having to do with defining probability measures on infinite stochastic processes,
which is related but quite different).

Here the o-finite condition on p means that there is a countable family (X,),
of subsets of X such that  J, X,, = X and for all n, X,, € B and p(X,,) < . Even
though we will use it in the proof (and in all interesting examples I know it holds),
the o-finiteness assumption can be dropped for the existence part but is essential
to the uniqueness part.

The construction mimics word-by-word the construction we have made for the
Lebesgue measure. In particular we define

Definition 4.15. the outer-measure u* of an arbitrary subset E of X by
p*(E) = inf{) u(B;); E = | | Bi, Bi € B}

where the family {B;} is countable.
And we

Definition 4.16. say that a subset E < X is u*-measurable if for every e > 0 it is
contained in a countable union C := |, By of sets from B such that p*(C\E) < €.

The existence part of Caratheodory’s theorem then follows from

Proposition 4.17. Under the assumptions of Theorem 4.14, the family B* of u*
measurable subsets of X is a o-algebra containing B (called the completion of B
with respect to p). The outer-measure p* is countably additive on B* and coincides
with @ on B.
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We'll prove the uniqueness part of Theorem 4.14 next time as a consequence of
Dynkin’s lemma.

Proof. As it turns out we have already proven Proposition 4.17, because the proof
we gave of Proposition 3.5 for the existence of the Lebesgue measure, works ver-
batim in our generalized setting. In fact the definitions we have given today were
geared to make all previous arguments work in this abstract setting. This is the
power of the axiomatic method! That said, it is still a good exercise to check this by
yourselves. You will have to replace the words “boxes” and “elementary set” by the
word “element of B”. At some point we considered bounded subsets of R%: replace
this notion by the word “contained in X, for some n”, where X, is any family of
sets in B such that ;(X,) < 00 and X = [, X,,. At some point we also used the
Heine-Borel property, but this was only to establish the continuity property for the
Jordan measure, which we assume here. Everything else works verbatim. O

Note that B* contains all null sets (i.e. sets with zero p*-measure). In the case
of R? and the Boolean algebra generated by elementary sets, B* coincides with £,
while o(B) is the Borel o-algebra.

Of course the main and defining example of use of Caratheodory’s extension
theorem is the construction of the Lebesgue measure from the Jordan measure, but
we will see several more examples in this course, in probability theory in particular.

A side remark: Paul Halmos in his well-known book and James Norris in his
lecture notes take a slightly different route to define p* and the notion of p*-
measurability, which is closer to Lebesgue’s original definition. A set is said to be
p*-measurable if the sum of its outer measure and that of its complement equals
1(X) (assuming this is finite). These two approaches are equivalent (see the Ex-
ample sheet). Ours sticks more closely to the intuitive idea that the measure of a
set is given by the smallest number of cubes needed to cover it.

Another side remark: although Borel measures on abstract topological spaces
may at first sight look much more complicated and rich than the good old interval
endowed with Lebesgue measure, this is not so. It can be shown that if X is
a compact metric space and p a probability measure on its Borel o-algebra B
giving mass zero to each point, then there is a measure preserving (measurable)
isomorphism between (X, B*, u) and ([0, 1], £, m).

5. UNIQUENESS OF MEASURES

We now discuss 7-systems and the problem of uniqueness of measures.

Definition 5.1. Let X be any set. A family F of subsets of X is called a 7-system
if it

(1) contains the empty set, and

(2) is stable under finite intersections.

So this is a weaker notion than being a Boolean algebra. The reason for in-
troducing it is the following proposition and lemma that help in proving that two
measures are the same: it is enough to check that they are the same on a 7-system
generating the o-algebra.

Proposition 5.2. (measure uniqueness) Let (X, A) be a measurable space and
11, 2 be two finite measures on X such that p1(F) = po(F) for all F € F U {X},
where F is a w-system such that o(F) = A. Then p1 = pa.

For the proof we will require:
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Lemma 5.3. (Dynkin’s lemma) If F is a w-system and F < C, where C is a
family of subsets of X, which is stable under complementation and disjoint countable
union, then o(F) < C.

Proof of Proposition 5.2. Let C = {A € A, u1(A) = p2(A)}. Note that C is stable
under complementation, because p1(X\A) = u1(X) = p1(A), and also stable under
disjoint countable unions by c-additivity of both measures. By Dynkin’s lemma,
we conclude that o(F) < C, so C = A. O

Remark 5.4. While the conclusion may fail in general if p; and po are infinite
measures, it very easy to see that it continues to hold under the following mild
additional assumption: that there is a countable family of subsets F,, € F each of
finite measure and such that X = J,, F,.

Proof of Dynkin’s lemma. Let M be the smallest family of subsets of X containing
F and stable under complementation and disjoint countable union (note that such
an M exists, it is the intersection of all such families). We need to show that M is
a Boolean algebra (note that this will clearly imply that M is a o-algebra, because
as we have already seen any countable union of sets from a Boolean algebra can be
written as a disjoint countable union of such sets).
So let
M :={Ae M,AnBe MVYBe F}.
Then M’ again is stable under complementation and disjoint countable union (note
that A° n B € M because it is (B¢ u (4 n B))¢). And clearly, by definition of M’,
since F is a m-system and thus stable under intersection, we have 7 < M’. Now
by minimality of M we conclude that M’ = M.
Similarly set
M"={Ae M,AnBe MYBe Mj.
Then again M” is stable under complementation and disjoint countable union, so
by minimality M” = M. So M is a Boolean algebra, and hence a o-algebra as
desired. (]
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A simple consequence is:

Proposition 5.5. Lebesgue measure is the unique translation invariant measure
m on (R% B(RY)) such that m([0,1]¢) = 1.

Recall that B(R?) denotes the o-algebra of Borel subsets of R?. And translation
invariant means that m(A + x) = m(A) for all A e B(R?) and all x € R%.

Proof. The fact that m is translation invariant is clear, because the outer measure
m™* is obviously translation invariant. So we have to prove the uniqueness. Let u be
a measure as in the statement of the proposition. Let F be the family of all boxes in
R<. Note that F is a m-system made of Borel sets such that o(F) = B(R?) (because
every open set is a countable union of boxes). So by the previous proposition (and
Remark 5.4) it is enough to show that 4 = m on F.

In fact it is enough to check that p = m on Fg, the family of dyadic bozes (i.e.
boxes with side lengths of the form %, k,n € Z), because of upwards monotone
convergence (every box is an increasing union of dyadic boxes).

Also, given a coordinate hyperplane H (i.e. H = {x € R% z; = 0} for some i) in
R? we have u(H) = 0 by translation invariance (otherwise some cube, a translate of
[0,1]¢, would intersect H in a set of positive measure, and by translation invariance
we could pack infinitely many translates of this intersection inside the same cube
contradicting the finiteness of p([0,1]4)).

Now we can write [0, 1] as a union of 2"¢ translates of the dyadic box [0, 5+]¢,
each having the same measure (by translation invariance, because the boundaries
are contained in hyperplanes of measure zero). So by additivity p([0, 2%]d) =27nd,
And since any dyadic box is an almost disjoint (i.e. with overlaps confined to
hyperplanes, hence of measure zero) finite union of translates of such small cubes,
by translation invariance again we get that u(B) = m(B) for all dyadic boxes B as
desired. O

We end with two remarks:

Remark 5.6. There are no countably additive translation invariant measure p
defined on the family of all subsets of R and such that 0 < p([0,1]) < oo (because
Vitali’s counter-example would lead to a contradiction in exactly the same way as
we have discussed already).

Remark 5.7. However (assuming the Axiom of Choice) there are finitely additive
ones (one says that R/Z is a discrete amenable group), but this requires some
functional analysis (e.g. the Markov-Kakutani fixed point theorem).

6. MEASURABLE FUNCTIONS

Definition 6.1. Let (X,.A) be a measurable space. A function f : X — R is said
to be measurable with respect to A if for all t € R

{xe X, f(x) <t}e A

Following this definition, we make two initial remarks. The first is that if f is
measurable, then the pre-image f~1(B) of any Borel subset B € B(R) belongs to .A.
This is clear, because on the one hand the family of all such subsets B is a o-algebra
and on the other hand the family of all intervals (—o0,t) for ¢t € R, generates the
o-algebra of Borel subsets of R.

The second remark is that it is sometimes convenient to extend the notion of
measurability to functions that can take the value +00 or —oo. In that case we say
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that f is measurable (w.r.t A) if additionally the sets {z € X, f(z) = +ow0} and
{zxe X, f(x) = —ow} are in A.

More generally we can define the notion of measurable map between any two
measurable spaces.

Definition 6.2. A map f : X — Y between two measurable spaces (X, A) and
(Y, B) is called measurable if f~1(B) € A for all B € B.

To have a better feel for the notion of measurability of a map, let us give some
examples:
Examples:

(1) every continuous function f : RY — R is measurable: indeed {x € RY, f(x) < t}
is an open set.

(2) if (X,.A) is a measurable space and F c X a subset, then E € A if and only if
the indicator function 1g is A-measurable.

(3) if X = Ul X; is a finite partition of a set X with non-empty pieces. Let A
be the Boolean algebra generated by the pieces X;’s (so its elements are the
unions of pieces). Then a function f : X — R is measurable (with respect to
A) if and only if it is constant on each X;. In this case we see that the set of
all measurable functions on (X, .A) forms a real vector space of dimension N.

As these examples demonstrate, the notion of measurability of a function on X
is very sensitive to the choice of g-algebra A. Being measurable with respect to A
means, roughly speaking, that the value of the function at a point x depends only
on the family of sets from A that contain x.

In Analysis, mathematicians often work with a single o-algebra: the Borel o-
algebra (or its completion, the Lebesgue measurable sets) but consider various
measures on this space. In Probability the opposite is true: the measure is given,
while the o-algebra may vary a lot. In Information Theory the sigma algebra can
be interpreted as the precision at which one can understand a given function or
signal, the coarser the subalgebra is (i.e. the fewer subsets of X it contains), the
less information one can retrieve from a function measurable w.r.t this subalgebra.

The class of measurable functions is very handy and stable under several basic
operations (a much wider range of operations than say for the class of piecewise
continuous functions on R):

Proposition 6.3. (a) given three measurable spaces, the composition fog: X — Z
of two measurable maps f: X —-Y and g:Y — Z is measurable.

(b) the family of measurable functions on a measurable space (X, A) forms an R-
algebra: namely if f,g are two such functions then so is f + g, fg and \f for
any scalar \ € R.

(c) If (fn)n=1 is a sequence of measurable functions on (X, A), then limsup f,,
liminf f,, inf f,,, sup f,, are also measurable.

Proof. (a) is clear, (b) follows from (a) once it is shown that the maps
R? - R
(r,y) ~z+y
and
R> >R
(z,y) = zy

are measurable (for the Borel o-algebra on R?). This is the case, because the sets
{(x,y) e R?,x +y < t} and {(x,y) € R?,zy < t} are both open, hence Borel.
(c) This follows from the following translations:
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(i) inf fo(z) <t <= z e |J,{fn(x) <t} and inf f,(z) = -0 < =z €
Miz1 Uniz, fulz) < =k}
(ii) sup fu(z) <t <= z€J,zy N {falz) <t — 1}
(iit) liminf f,(2) <t <= 2 € Upsr My Upsel®, fu(z) <t — L3
(iv) limsup fp(2) <t <= 2 € Uyor Uy Nuspl®, fulz) <t — L}
U

Proposition 6.4. Let (X,.A) be a measurable space and f : (X, A) — R? a
map. Then [ is A-measurable if and only if each f; is A-measurable, where

f=C(f fa)
Proof. (=) note that {z € X, f;(z) <t} = f~'({y e R%,y; < t}) for each i. Soif f
is A-measurable, so is each f;.

(<) conversely if f; is measurable for all 4, then f~1(][a;, b;]) = ﬂ;l{x € X,a; <
fi(xz) < b;} is in A. But boxes Hf[ai, b;] generate the Borel o-algebra B(R?). So
f~Y(B) € A for all B e B(R?Y).

(]

Definition 6.5. If X is a topological space, a function f: X — R is called Borel
measurable (or simply Borel) if it is measurable with respect to the Borel o-algebra

B(X).

Remark 6.6. (i) the preimage of a Lebesgue measurable subset of R by a mea-
surable function need not be measurable (this is due to the wealth of null sets,
cf. 2nd example sheet)

(ii) the image of a measurable set under a measurable map need not be measurable
(e.g. if the target space is endowed with the trivial o-algebra (the one made
of only @ and the whole set) then every map is measurable).

(iii) worse: the image of a Borel set by a continuous function need not be mea-
surable. In fact there exists a Borel subset B < R? such that 71 (B) < R is
not Lebesgue measurable, where 71 (x,y) = x is the projection onto the first
coordinate (this was Lebesgue’s famous mistake!).

7. INTEGRATION

We now begin the construction of the integral. As we will see, we are going to
be able to integrate any non-negative measurable function defined on any measure
space (X, A, p).

Definition 7.1. A simple function on a measure space (X, A, p) is a function of
the form Zf[ a;la,, with a; 20, A; € A for eachi=1,...,N.

Note that a simple function is non-negative and measurable. Equivalently, it is
straightforward to verify that a simple function on (X, .A) is a measurable function
admitting only finitely many values, all non-negative.

Example 7.2. Let I be a countable set endowed with the discrete o-algebra (i.e.
all subsets of I) and a measure p. Then a simple function is just a non-negative
function on I admitting finitely many values. Moreover u(f) = >,c; f(@)u({i}).

Lemma 7.3. If a simple function f has two representations f = Zfi a;la, =
iw bjlp,, then

N M
Dlaip(Ai) = > biu(B;).
1 1

(We have taken the fonction 0-c0 = 0 in case some A; or B; has infinite measure
and the corresponding coefficient is zero.)
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Proof. We omit the proof, this is an exercise in the first Example sheet. O

We can now define the integral of the simple function f with respect to p by

N
p(f) =Y ain(Ay).

We will also use another standard notation for the same quantity:

o

which is closer to the original leibnizian notation for the integral. Note that u(f) €
[0, +co].

Having defined u(f) for (non-negative) simple functions, we are ready to extend
the definition to all non-negative measurable functions. We do this as follows: given
a non-negative measurable function (i.e. Vo € X, f(x) > 0, we abbreviate this as
f =0), we define

p(f) == sup{u(g), g < f, g simple}. (7.1)
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Lecture 7

This is consistent with the case when f is simple, by (7) of the following

Proposition 7.4 (Positivity of the integral). Suppose f,g are non-negative mea-

surable functions on (X, A, u).
(1) (positivity) f = g implies p(f) = (g
f) =

(ii) (equality case) if f = g and p(f)
where.

):
u(g) is finite, then f = g almost every-

To say that f = g almost everywhere means that {x € X, f(z) # g(x)} has p-
measure 0, i.e. is a null set (note that this set belongs to A because f is measurable).
It is often abbreviated as f = g a.e., or equivalently for p-a.e. x € X, f(z) = g(x).

Proof. First we verify that both items hold when f and g are assume to be simple
functions. This is pretty obvious given the definition and Lemma 7.3: just note
that f — g is again a simple function and that pu(f — g) = p(f) — n(g). Then
() is immediate for any non-negative measurable functions by (7.1). Let’s prove
(ii). If A, := {z € X, f(z) —g(x) > L}, then f—g > 114, pointwise. In
particular u(f — g) = Lpu(A,) by (i). However by (7.1) we have immediately
w(f) = plg) + u(f — g) (we will see shortly below that there is in fact always
equality, but this half is obvious at this stage). Since we assumed that pu(f) = u(g)
we get u(f —g) = 0 and so we get u(A,) = 0, and by subadditivity p({z, f(z) >
9(@)}) < 2, 1(An) = 0. O

Note that the converse is clear: if f, g are non-negative measurable functions
on (X, A) such that f = g p-almost everywhere, then u(f) = u(g). Indeed if
E ={z e X, f(z) = g(x)}, then pu(E°) = 0 and thus for every simple function h
we will have p(h) = p(hlg) (by Lemma 7.3). In particular if h < f, then hlg < g
and thus p(h) = p(hlg) < p(g), which yields p(f) < u(g) by (7.1). By symmetry

p(f) = u(g).

Example 7.5. (i) In the previous example, u(f) = Yo, f(i)p({i}), and this holds
also for every non-negative function (note that all functions are measurable, because
the o-algebra is the discrete one).

(i1) when (X, A, p) is (R,L,m), and f is a Lebesgue measurable function, then
m(f) is called the Lebesgue integral of f. It coincides with the Riemann integral
of [ in case [ is assumed Riemann integrable (cf. Example sheet).

We defined the integral by means of simple functions. It is often useful to be
able to approximate any non-negative measurable function by simple functions as
follows:

Lemma 7.6. Let f > 0 be a measurable function on the measure space (X, A, p).
Then there is a sequence of simple functions g, with g, < gnt1 such that g, — f
pointwise (i.e. Vx € X, gn(x) — f(x)).

Proof. One can take, for example, g, = 52" min{f(x),n}|, where |z] denotes the
largest integer less or equal to = (to see that g,4+1 > g, note that |2y| = 2|y| for
all y > 0).

We now move on to the main result regarding Lebesgue’s integration, namely
Lebesgue’s Monotone Convergence Theorem. This will be the key result, which will
imply the next two important statements: Fatou’s lemma and Lebesgue’s Domi-
nated Convergence Theorem. Together these three facts make Lebesgue’s integra-
tion theory much more powerful and versatile than Riemann’s. The scope and
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generality in which these results hold (i.e. on abritrary measure spaces) make them
ubiquitous in mathematics.

Theorem 7.7 (Monotone Convergence Theorem, MCT). Let f,, = 0 be a sequence
of non-negative measurable functions on a measure space (X, A, ) such that

O<Kfi<fos<...<fa<...
Let f(x) = lim, f,(z) € [0,4+00] for each x € X. Then

u(f) = T p(f):

p———
Lemma 7.8. If g is simple, the map
mg : A — [0, +0]
E— p(1pg)
is a measure on (X, A).

Proof. We need to check o-additivity of my. Solet E = | | E, a disjoint countable
union of sets from A. Then we have u(l1gg) = Ziv aip(EnA;)if g => a;la,. But
E — pu(E n A;) is o-additive for each ¢, since p is, hence so is my. O

Proof of the MCT. We have f,, < fnt1 < f, 80 u(fn) < p(fns1) < p(f) by (i) in
Proposition 7.4. Hence lim,,_, 1o p(f,) exists and is < p(f).

We will now show the reverse inequality. To this end let g be a simple function
with ¢ < f. Pick € € (0,1) and let E,, = {x € X, fo(z) = (1 —€)g(x)}. Then
X =, En and E,, c E,41). So we may apply upwards monotone convergence
for sets to the measure m, on (X,.A) and thus get:

Timmy(Ey) = my(X) = p(g)

but
(1 —e)my(En) = p((1 —e)glp,) < p(fn)
where the last inequality follows from (¢) of Proposition 7.4. We conclude that
)< lim pu(fn)

(1 —e)ulg) < lim
holds for every simple function g < f and for all € € (0,1). Letting ¢ tend to 0 we

deduce that u(f) < limy,— 1o p(frn) as desired. O
We are now ready for

Lemma 7.9 (Fatou’s lemma). Let f, = 0 be a sequence of non-negative measurable
functions (on a measure space (X, A,pu)). Then
. < limi .
plliminf f) < liminf u(f,)

n—+0o0

Remark 7.10. Strict inequality can occur. For example when (X, A, u) = (R, £, m)
and we consider either of the following “moving bump” example: (i) f,, = L1l
(i) fn = %1[0@], (iii) fn = nlp1 2y, where each time f, — 0 pointwise, while
,u(fn) =1

Proof of Fatou’s lemma. Let g, := infg>, fr and g = liminf, 4 f,. Then g, 1 >
gn = 0 and g,, — g pointwise, so by the Monotone Convergence Theorem, we have
1(gn) — p(g). But gn < fn, so u(gn) < pu(fn) by positivity (Proposition 7.4). And
thus: p(g) < liminf,— 1o p(fn)- O

So far we have defined the integral for non-negative measurable functions only. In
order to extend this definition to functions that can change sign, for any measurable
function f : X — R, we set f* := max{0, f} and f~ := (—f)*. Note then that
Ifl=f"+f and f = f* — f~. Moreover f*, f~ and |f| are clearly measurable.
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Definition 7.11. A measurable function f : (X, A) — R is said to be p-integrable
if u(|f]) < oo. In this case its integral is defined by p(f) == p(f+) — p(f7).

So integrable functions as those measurable functions whose absolute value has
finite integral. Beware that f > 0 can be measurable without being integrable,
even though p(f) is well-defined (and equals +00).

Proposition 7.12 (Linearity of the integral). Let f, g be measurable functions on
(X, A, pn) and let o, B € R. If f, g are assumed integrable, then af + By is integrable
and

plaf + Bg) = au(f) + Bu(g). (7.2)
Moreover (7.2) also holds if we replace the integrability assumption on f,g by the
assumption that f,g and o, B are non-negative.

Proof. Write f = f* — f~,a=a" —a™ and 8 = 87 — 8~ and expand af + Bg.
It then becomes clear that the proof reduces to proving (7.2) in the case when
fsg9,a, B are all non-negative. That u(af) = au(f) is obvious from the definition
of the integral (by means of simple functions). So only u(f + g) = p(f) + u(g)
needs to be shown. This is clearly true for simple functions (by the previous lemma
that any two different writings of a simple function give rise to the same value of
their integral). The general case follows by the Monotone Convergence Theorem
by approximating f and g by simple functions (Lemma 7.6). O

We are now ready for the following important theorem.

Theorem 7.13 (Lebesgue’s Dominated Convergence Theorem). Let f and (fn)n>1
be measurable functions on a measure space (X, A, ). Assume that there exists an
integrable function g such that for all x € X

(1) |fn(2)] < g(x) for alln > 1,
(it) limy,— 1o fr(x) = f(2).
Then lim, o p(frn) = p(f) and f is integrable.

In this result lies the main advantage of Lebesgue’s integration versus Riemann’s:
it allows to move the integral sign passed the limits and exchange the two. So it is
very powerful a tool.

Proof. Since |f,,| < g for all n, passing to the limit we get |f| < g. It follows that f
is integrable and that g + f,, = 0 for all n. Then Fatou’s lemma applies and yields

pg) +p(f) = ulg+ f) = pliminf g + ) <liminf p(g+ fn) = p(g) +liminf u(f,)
where we have also used the linearity of the integral. But u(g) < o0, so
< limi .
p(f) < liminf p(fy)
What we have just done for f,,, we can do for —f,,. And this will give us:
—p(f) < —limsup p(fp).
n—+00

This ends the proof. [l
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We can upgrade slightly all three main statements (MCT, Fatou’s lemma, Lebesgue’s

DCT) as follows. We have assumed that the limits (or liminf) hold pointwise,
namely for each x € X. It turns out that the conclusion of all three results continue
to hold under the weaker assumption that the limits hold p-almost everywhere. For
example in the MCT, we can assume that the assumptions f, > 0 and f,4+1 = fn
only hold p-almost everywhere, or in Lebesgue’s DCT, we can assume that each of
the two assumptions f(z) = lim, f,(z) and |f(z)] < g(z) only hold for u-almost
every

Proof. For the MCT for example we can set E, = {z € X, f,(z) >0}, F,, = {x €
X, fa+1(z) = fo(x)}. Then the complement of E = (| E, n F, is a p-null set and
we can set f/(z) = lgf,(z) and now apply the original MCT to f; to conclude
that pu(1gf) = lim, p(1gf,). But it follows from the definition of the integral (7.1)
that u(flg) = u(f) and p(fnleg) = p(fyn) for all n. Proceed similarly for Fatou’s
lemma and the DCT. O

We now pass to two important corollaries of Lebesgue’s Dominated Convergence
Theorem.

Corollary 7.14 (Exchange of { and > signs). Let (X, A, ) be a measure space
and (fn)n=1 a sequence of measurable functions.

(i) if fn =0 for all n, then

M(Z fn) = Z p(fn)

n=1 n=1

(1) if Dpsn |fnl is p-integrable (i.e. p(X,~, |fnl) < 0), then so is 3 o, fn, and

N(Z fn) = Z N(fn)

n=1 n=1

Proof. (i) Let gy = Zf[ fn, then gy is a non-decreasing sequence of non-negative
functions, so we can simply appy the Monotone Convergence Theorem to reach the
deired conclusion.

(ii) Let g = >,~1 [fnl. Then [gn| < g for all N. So by Dominated Convergence,

we get p(gn) = N—too p(limgy). O

Corollary 7.15 (Differentiation under the § sign). Let (X, A, 1) be a measure space
and let U < R be an open set. Let f: U x X — R be such that

(i) © — f(t,x) is p-integrable for everyte U,

(i) t — f(t,x) is differentiable for every x € X,
(11i) (domination) 3g : X — R a u-integrable function such that for allt € U, and

allze X
1 t,2)] < gt).
Then © — (Z{ (t,x) is p-integrable for all t € U. Moreover, setting

Plt) = JX Fo t)du()
F is differentiable on U, and

F(t) = X@{(t,xmum.
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Proof. Let h, a sequence of positive real numbers such that lim, h,, = 0. Set

gty ) = h—ln[f(t T ) — f(t2)],

which given ¢t € U is defined as soon as t + h,, € U, and in particular for all large
enough n. By the Mean Value Theorem there exists 6, ; ., € [¢,¢ 4+ hy,] such that

0
gn(t,) = a—{(m,m,n,x).

Hence for each t, for all large enough n and for all x € X,
lgn(t, )| < g(x).
Moreover for all t € U and = € X, lim,, g,,(¢,z) = %(t, x). But

on(t2)) = [ _gu(t.0)dn(o) = G-I+ ha) = PO

n

so by Dominated Convergence, we get

liTan hin[F(t +hy) — F()] = . %(t, x)du(z).

So F is differentiable at t and its derivative F’(t) is equal to the right hand side. O

You will see several examples of use of these theorems in the Example sheets.
To end this section we make (without proof) several remarks that can be skipped
in first reading:

Remark 7.16. If f : [a,b] — R is continuous (¢ < b real numbers), then it is
integrable with respect to the Lebesgue measure m, and moreover

mih) = | ' f)de

where the latter is ordinary Riemann integral of f. More generally one can show
that if f is only assumed to be a bounded function, then f is Riemann integrable if
and only if the set of points where f is not continuous has Lebesgue measure zero
(see the Example sheet).

Remark 7.17 (Fundamental Theorem of Calculus). We’ve learned in a basic course
on differential calculus the Fundamental Theorem of Calculus, according to which
a function f : [a,b] — R assumed to be differentiable with continuous derivative
(that is a C'! function) satisfies

b
F(b) — fla) = f f(@)dz. (7.3)

What happens if we relax the hypotheses a bit? Well it depends and it is an in-
teresting chapter of Analysis to determine under what conditions the Fundamental
Theorem of Calculus still holds. It turns out that it is enough to assume that f is
differentiable and f’ is integrable w.r.t. Lebesgue measure (see Rudin’s book). Tt is
also enough to assume that f is a Lipschitz function: in that case it can be shown
that f differentiable almost everywhere, its derivative is integrable and (7.3) holds.
On the other hand it is not too difficult to construct examples of non-descreasing
and non-constant continuous functions such that f’(z) = 0 almost everywhere for
Lebesgue measure, so that clearly (7.3) fails (see the “Devil’s staircase cosntruc-
tions” as in Ex 12 in the 1st Example sheet). More about this, and in particular a
proof of the main result in this area, the Lebesgue Density Theorem (whose proof
bares a lot of resemblance to the that of the pointwise ergodic theorem) is given in
the Lent term D-course “Analysis of Functions”.
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Remark 7.18 (invariance of Lebesgue measure under affine maps). We have shown
that Lebesgue measure is invariant under translation. It also behaves very well
under linear transformations. Namely if g € GL4(R) and f > 0 is a non-negative
measurable function on (R%, £, m), then

m(fog) (f)-

=——m
| det g]
In particular m is invariant by rotation on R? (see the Example sheet).

More generally, one can use the previous remark to establish the following useful:

Change of variables formula: Assume that U,V are open subsets of R? and that
¢:U — V is a C'-diffeomorphism, then

L F(6(@)) s (w)de = L f()ds

where dx is short for dm(x) the Lebesque measure, f = 0 is an arbitrary Borel
measurable map on V' and Jy(z) := |detdp(x)| is the Jacobian of ¢, i.e. the
absolute value of the determinant of its differential.

The details of the (slightly boring) proof can be found in Rudin’s book as well
as in many other textbooks. The same formula clearly holds (looking at positive
and negative parts of f) if we change the assumption f > 0 and assume instead
that f integrable on V with respect to Lebesgue.

Next we comment on a the relation between measure theory and linear function-
als, which is at the basis of Bourbaki’s approach to integration:

Remark 7.19 (Riesz Representation theorem). Let X be a topological space,
which is locally compact (i.e. every point has a compact neighborhood) and second
countable (i.e. there is a countable basis of open sets for the topology). A Radon
measure on X is a Borel measure p, which is finite on every compact subset of X.
If 1 is a Radon measure, then the map:

C.(X)—R
f=ulf) = JX fdu

defines a linear functional on the normed vector space of continuous and com-
pactly supported functions C.(X) on X endowed with the supremum norm | f| :=

sup,ex | f(x)]. Moreover [u(f)| < [[f|eop(Supp(f)), where

Supp(f) := {z € X, f(z) # 0}
is the (compact) support of f. And the functionial is non-negative, i.e. f > 0 =
u(f) = 0.

It turns out that this is a characterization of Radon measures: every non-negative
linear functional on C.(X) is of the form u(f) for a certain Radon measure p on
X. This is called the Riesz representation theorem for locally compact spaces (see
Rudin’s book on Real and Complex analysis for a proof).

This functional analytic point of view leads to an integration theory (in which
one defines a measure as a non-negative linear functional) that serves most purposes
of analysis on locally compact spaces and has been the preferred route to present
integration theory among mathematicians for a while (cf. Bourbaki’s volumes on
integration). Its drawback is that it is confined to locally compact spaces and hence
less general than the route via abstract measure theory we have presented in these
lectures, and unsuitable for much of probability theory.




28 PROBABILITY AND MEASURE 2019-2020

8. PRODUCT MEASURES

Definition 8.1 (Product o-algebra). Let (X,.A) and (Y, B) be measurable spaces.
Then the o-algebra generated by all product sets A x B with A€ A and B € B is
called the product o-algebra of A by B and is denoted by A® B.

Remark 8.2. (i) note that the family of product sets (i.e. A x B, A € A and
B € B) forms a w-system.

(#i) by analogy with the notion of product topology in topology, the product o-
algebra is the smallest o-algebra on X x Y making both projection maps (to X and
to Y') measurable (this is a trivial check).

(iii) for the Borel o-algebras on R, we have the following nice compatibility:

B(R™) ® B(R®) = B(R“ ).

However this is not so for the o-algebra of Lebesgue measurable sets (the product
of two copies of £L(R) is not complete, so strictly smaller than £(R?), see the 2nd
Example sheet).

Example: if X = |_|iv X;and Y = |_]i” Y; are finite partitions of two sets and A
(resp. B) is the Boolean algebra generated by this partition of X (resp. Y), then
A® B is the Boolean algebra generated by the partition (X; x Yj)1<i<n,1<j<m of
X xY.

The following lemma says that every vertical slice of a A®Q B-measurable set is it-
self B-measurable (and of course vice versa: every horizontal slice is .A-measurable).

Lemma 8.3. If F ¢ X xY is A® B-measurable, then for all x € X the slice
E,:={yeY,(z,y) € E} is B-measurable.

Proof. Note that C := {EF < X xY, E, € BYx € X} contains all subsets of the form
E x F with E € A and F € B. And it is a o-algebra. Indeed if E € C, then so
does its complement E€, because (E€), = {y €Y, (z,y) € E¢} = (E,)¢. Similarly if
E,, € C for all n, then |, E, € C because (|J,, En)z = |J(En)z. This means that
AR B cC. O

Lemma 8.4. Assume that (X, A, ) and (Y, B,v) are o-finite measure spaces and
let f: X xY — [0,4+00] be A® B-measurable. Then

(a) for allz e X, y— f(x,y) is B-measurable,
(b) x—§, f(z,y)dv(y) is A-measurable.

Proof. (a) the special case f = 1g for any F € A® B was exactly the content of the
previous lemma. This implies the case when f achieves only finitely many values,
i.e. when f is a simple function. The general case follows, because f is a limit of
simple functions (see Lemma 7.6).

(b) By the same token we may assume that f = 1g for some F € A® B. Now
we may write Y = ], Y, where Y;,, 11 < Yy, and v(Y},) < oo for all m. Note that
it is enough to show that z — v(E,; n'Y,,) is A-measurable for each m. Indeed:

-L 1g(z,y)dv(y) = v(E,) = li7£ln V(E; nYy)

Then we can consider the family
C={Fe AR B,z — v(E; nYy,,) is A-measurable for all m}

and observe that
(i) C contains all E = A x B, because v(E, N Yy,) = 1a(2)v(B nYy)
(ii) C is stable under complementation: v((E), nYy,) = v(Ys,) — vV, 0 Ey)
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(iii) C is stable under disjoint countable unions: if £ = | | E,, then

V(B A i) = Y 0((En)z 0 Yon)
so by Dynkin’s lemma we conclude that C is the o-algebra generated by the 7-
system of product sets. So C = A® B. O
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Proposition-Definition 8.5 (Product measure). Let (X, A, u) and (Y, B,v) be o-
finite measure spaces. Then there exist a unique measure o on the product o-algebra
A® B such that for all A€ A and all B € B we have:

o(A x B) = u(A)v(B).
The measure o is called the product measure and is usually denoted by p® v.

Proof. Let us first prove the existence of such a measure. For E € A® B we set:

o(B)i= | (B )du(o)

where F, is the vertical slice defined above. It is well-defined because the function
x — v(E;) is A-measurable by Lemma 8.4 (b) applied to f = 1g. It is also
countably additive: this is a consequence of the Monotone Convergence Theorem:

(B = | Rot@)0dn) = 3 [ d(B)dnte) = Kol

As for uniqueness, it follows immediately from Dynkin’s 7-system uniqueness
lemma (cf. Prop. 5.2), because the family of all product sets A x B, Ae A, Be B
clearly forms a m-system, which by definition generates A ® B. O

Remark 8.6. The o-finiteness assumption is essentially a technical assumption
that holds in most cases of interest, but it is important for the uniqueness clause
in the previous definition.

Remark 8.7. Another route to establish the existence of the product measure is
to apply Caratheodory’s extension theorem to the Boolean algebra generated by
product sets. This is possible and close to what we did in the first lecture regarding
the Jordan measure (as one first needs to show that this Boolean algebra is made of
disjoint finite unions of product sets and extend to measure to these sets), but also
requires some work (and the Monotone Convergence Theorem) to establish that it
has the continuity property.

Remark 8.8. One can also define the product measure on the product of more
than two measurable spaces, i.e. AQB®C on X xY x Z, simply by iterating the
above construction. One checks easily (exercise!) that this operation is associative
(i,e. (A®B)®C = A®(B®C)) and the resulting o-algebra, and product measure,
is independent of the order in which the products are taken.

Example: The Lebesgue measure on Borel subsets of R? is the (d-fold) product
measure of the Lebesgue measure on R.

Theorem 8.9 (Fubini-Tonelli theorem). Let (X, A,p) and (Y,B,v) be o-finite
measure spaces.

(a) If f : X xY — [0, +0] is A® B-measurable, then
| siwev= | (| reow@ae -] (] fepa@)io. 6

(b) If f: X xY — R is p® v-integrable, then for p-almost every x, y — f(z,y) is
v-integrable and x — §, f(x,y)dv(y) is p-integrable. Moreover (8.1) holds.

Proof. (a) holds for f = 1g and any E € A® B by Lemma 8.4. So it holds for
simple functions and hence, thanks to the Monotone Convergence Theorem, for all

non-negative measurable f.
(b) write f = f* — f~ and apply (a) to f* and f~. O
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Remark 8.10. Note that u®u(|f]) = uQv(f)+u®v(f~), so if this is finite, then
both terms are finite and by (a) §, (§, f*(z,y)dv(y))du(z) < oo, which implies
that {z € X, {,, f*(z,y)dv(y) = o0} is a p-null set.

Example: The assumption that f is u ® v-integrable is necessary in general to be
able to swap the order of integration. A silly example is given by X =Y = N and
A = B =the discrete g-algebra of all subsets with ;4 = v =counting measure, and
for all n,m > 1,

f(n,m) = ]-n=m - 1n=m+1
Clearly, Ym > 1, >, o, f(n,m) = 0, while for all n. > 2 >, _, f(n,m) = 0 and
Yim=1 f(1,m) = 1. So we see that

D) fnm) # > f(n,m).

Remark 8.11. This theorem applies in particular to Lebesgue measure on R?
provided the function f is Borel-measurable on R?. There is also a version of this
theorem (and of Lemma 8.4) that holds for all Lebesgue measurable functions on
R? as well (see next remark).

Remark 8.12 (Completed version). As mentioned above the product measure
1 ®v on the product o-algebra may not be complete (i.e. sub-null sets, i.e. subsets
of y ® v-null sets from A ® B, may not be in A ® B) even though both p and
v are complete. So it is often implicit to automatically complete p ® v to the
completed o-algebra A® B (i.e. the family of sets that are unions of subsets from
A ® B with sub-null sets, see the Example sheet 1). Then Theorem 8.9 continues
to hold verbatim with A® B in place of A® B (exercise!). On the other hand, the
corresponding analogues of Lemma 8.3 and Lemma 8.4 (a) only hold for u-almost
every x € X, because for example a set of the form F = A x B, where A € A is
p-null, while B ¢ B will be p®wv-null (hence A ® B-measurable) and yet its slices E,,
for z € A will not be in B. At any case Theorem 8.9 holds for Lebesgue measurable
functions on R4 x Rz,

9. FOUNDATIONS OF PROBABILITY THEORY

In 1933 Kolmogorov published his famous treatise “Foundations of the Theory
of Probability” (or rather “Grundbegriffe der Wahrscheinlichkeitsrechnung” as he
wrote it first in German) in which he laid down the mathematical foundations of
probability theory, making use, for the first time, of the then recent formalism of
abstract measure theory and arguing that it is the right framework and language in
which to develop rigourously the calculus of probabilities. We follow his footsteps
in our lecture today.

For a lovely recent book with a historical point of view and a modern perspective
on what probability and statistics are really about, I recommend “Ten great ideas
about chance” by Diaconis and Skyrms (2018).

We will fix the ambient set §2. Probabilists call it a universe. It is the set of all
possible outcomes. An element of {2 is an outcome w, namely one of many possible
scenarios that might happen. In probability theory, we usually fix the universe once
and for all.

The family F of subsets of 2 will be the family of all possible events, or subsets
of possible outcomes that could take place. By assumption it is a o-algebra of
subsets of Q. A subset in F is called an event.

Now the odds that an event, say A € F occurs, is a number

P(A) e[0,1]
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called the probability of A. The natural axioms are:
(i) P(A or B) = P(A) + P(B)
provided A and B are disjoint, i.e. they cannot occur simultaneously.
(1) P(Q) =1,P(@) =0

and the continuity axiom: if A,, is a non-increasing sequence of events that cannot
occur simultaneously (i.e. A,41 < A, and (), 4, = &), then

lim P(4,)=0.

n—+00

The first two axioms turn P into a finitely additive measure on (€2, F) and the last
one (which is harder to justify empirically given that it depends on infinitely many
events, but it still very reasonable to take for granted) make it a (countable additive)
measure (recall that a finitely additive measure with the continuity property is
countably additive, see Exple sheet).

Recall:

Definition 9.1. A measure p on a measurable space (§2, F) is called a probability
measure if p(2) = 1.

In probability theory it is customary to give different names to notions that
we have already defined in measure theory. It’s only a cultural difference, but the
objects are the same. For example a measurable function is called a random variable
and the integral is called expectation.

Definition 9.2. Given a probability space (Q, F,P) (namely a measure space with
a measure P of total mass 1), a measurable function f : Q@ — R is called a
random variable and is usually denoted by a capital letter X or Y. Similarly the
P-integral is called the expectation and is denoted by E. An event A is said to hold
almost surely if P(A) = 1.

So for example we will write E(X) in place of §  fdP, etc. More generally we can
defined R%valued random variables X = (Xj, ..., X4). These are the same thing as
vectors of d real valued random variables.

Now comes an important definition.

Definition 9.3. A random variable X on (2, F,P) determines a Borel measure
px on (R,B(R)) by

ux(A)=P(X e A)
for every Borel set A € B(R). The measure pux is a probability measure called the
law of X or the distribution of X.

In other words the probability distribution py is the image measure of P under
the map X : Q@ — R. In general, given a measurable function f : (Y, A) — (Z,C) be-
tween two measurable spaces, and given a measure y on (Y, .A) the image measure,
denoted by fypu is the measure on (Z,C) defined by

Fen(C) == n(f7H(C)). (9.1)
Note that, clearly, if u is a probability measure, so is fyp.

The function t — Fx(t) := P(X < t) is called the distribution function of X.
(the notation P(X < t) is a shorthand for P({w € Q, X (w) < t}).

Remark 9.4. By the same token, one can define the distribution of an R%valued
random variable X = (Xj,...,Xy). This is the Borel probability distribution
H(Xy,....Xq) OD R? defined by Bxy,..xqa)(A) = P((X1,...,Xq) € A) for any Borel
subset A € B(R?).
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Example 9.5 (Archimedes’ theorem). Suppose we pick a point on the sphere uni-
formly at random. Call this random point w. Consider the orthogonal projection of
this point onto the north-south axis. What is the probability that it is closer to the
center of the sphere than it is from either pole?

Answer: % We can formalize this problem within the above framework. Here
Q will be the Fuclidean sphere, F the family of Borel subsets of the sphere (note
that they are precisely the intersections of Borel sets of R® with the sphere), and P
will be the Lebesque measure on the sphere, normalized so it has total mass 1 (to
define it, one can for example take Lebesque measure on R® restricted to the unit
ball minus {0}, renormalize it so it has total measure 1 and take its image (as we
have just defined) under the projection map R3\{0} — Q, z +— z/|z|.).

Then (2, F,P) will be a probability space and the orthogonal projection Y (w) will
be measurable (Borel measurable, because it is in fact continuous). The distribu-
tion of Y(w) can be easily computed (exercise!): it turns out that it is the uniform
distribution on the north-south axis, i.e. Lebesgue measure on that interval, renor-
malized so as to have total mass one. This is easily checked via calculus, and is a
fairly remarkable fact, going back to Archimedes.

So if X(w) is the distance between Y (w) and the north pole, then uy is the
uniform probability measure on the interval [0,2] and Fx (t) = P(X <t) = $14e[0,2]-
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Lecture 10

Proposition 9.6. Let (Q, F,P) be a probability space. Let X : @ — R be a random
variable. Then the distribution function Fx is non-decreasing and right-continuous.
Moreover Fx determines ux uniquely.

Proof. 1t is clear from the definition that F'x is non-decreasing. So see the continuity
claim, let t, > t be a sequence such that ¢, — t. Then the events {X < ¢,} =
{we D, X(w) < t,} form a non-increasing sequence of events whose intersection is
exactly {X < t}. By downward monotone convergence for sets, we conclude that
P(X <t,) > P(X <) as desired.

As for uniqueness, it follows from Dynkin’s lemma, given that the family of all
intervals (—oo, t] for ¢ € R forms, together with the empty set, a m-system generating
the Borel o-algebra B(R). O

Proposition 9.7. Conversely, if F : R — [0,1] is a non-decreasing, right contin-
wous function with limy_,_o, F(t) = 0 and limy_, 1o, F'(t) = 1, then there exists a
unique Borel probability measure g on R such that for allt € R,

F(t) = pr((=o0,t]).

Remark 9.8. The measure pp is called the Lebesgue-Stieltjes measure associated
to F. For all a < b, we have

pr((a,b]) = F(b) — F(a). (9-2)

Proof of Proposition 9.7. The proof of uniqueness is the same as before (via Dynkin’s
m-system lemma). To show that such a measure exists, note that one can define
wr by (9.2) on half open intervals and this defines a finitely additive measure on
the Boolean algebra consisting of finite unions of disjoint half open intervals. To
show that this extends to a well-defined Borel probability measure on R, we need
to apply the Carathéodory extension theorem. And for this we only need to verify
that it has the continuity property. The proof that ur has the continuity property
is exactly the same as the one we gave for the continuity of the Jordan measure
on elementary sets (see Lemma 3.8, which was based on the Heine-Borel property).
One only needs to check that given a finite union of half-open intervals of the form
(a, b] it is possible to shrink them a tiny bit and find a’,a” with a < @’ < a” < b so
that F'(a”) is arbitrarily close to F'(a) (this is possible thanks to the right continuity
property of F) and (a,b] o [a/,b] D (a”,b]. This way pr((a,b]) and pr((a”,b]) will
be very close to each other, while [a’, b] is compact. The argument via Heine-Borel
then applies without change. [l

There is a more direct way to construct the Lebesgue-Stieltjes measure associated
to F', which takes advantage of the fact that we have already defined the Lebesgue
measure (instead of proving the existence via the extension theorem, i.e. via the
same route used to construct the Lebesgue measure). And this is to view up as the
image measure of the Lebesgue measure on the interval [0,1] under the “inverse”
of F', namely the function

g:(0,1) >R
y— g(y) :=inf{t e R, F(t) > y}

Lemma 9.9. Given a function F : R — [0,1] as in Proposition 9.7, the “inverse
function” g defined by (??) is non-decreasing, left continuous, and satisfies:

VieR,Vye (0,1),9(y) <t < F(t)>y. (9.3)



PROBABILITY AND MEASURE 2019-2020 35

Proof. This is an easy check. First observe that

I,:={teR,F(t) >y}
is an interval in R, because if ¢ < t' € I, then y < F(t) < F(t'), because F is
non-decreasing, so y < F(t”) and hence t” € I, for every t” € (t,t'). This means
that I, has the form

I, = “("g(y), +),
where the bracket “(” could a priori be either open ( or closed [. But F is right
continuous, so the infinimum defining ¢(y) is realized and I, = [¢(y), +o0). This
shows (9.3). Also if y1 < ya, then I, < I, so g(y1) < g(y2). It remains to check
left-continuity of g. This is clear because if y, <y and y, — y, then (), I, = I,

y
by definition of I,,. So g(yn) — g(y). O

1

Remark 9.10. If F' is continuous and increasing, then g = F'~" is the inverse of

F (i.e. F og is the identity on (0,1) and g o F' the identity on R.)
Now let m be the Lebesgue measure on (0,1) and set

1= gsm,
be image of m under g (see (9.1)), that is:

p(A) == m(g™" (4))
for every Borel subset A  R. Then g is Borel measurable (because {y € R, g(y) <
t} = (0, F(t)] € B((0,1))), so u is a Borel measure, and

p((a,b]) = m(g~" ((a,b])) = m((F(a), F(b)]) = F(b) - F(a)
so by uniqueness, this is precisely the Lebesgue-Stieltjes measure constructed pre-
viously: pu = pup.

We have seen that a random variable (i.e. a measurable function defined on a
probability space (Q, F,P)) gives rise to a Borel probability measure on (R, B(R)),
called the law or probability distribution of X. It is interesting to note that con-
versely every Borel probability measure arises this way:

Proposition 9.11. If u is a Borel probability measure on R, then there exist a
probability space (Q, F,R) and a random variable X such that p = px. In fact one
can take Q = (0,1), F the Borel o-algebra of the interval (0,1) and P Lebesgue
measure on (0,1).

Proof. The first assertion is obvious if we set Q& = R, F = B(R), P = p and define
the random variable by X (z) = x. To see that one can also do this on (0,1) we can
use the distribution function F(t) := p((—00,t]) and define the random variable X
as X = g, the inverse of F', as in the previous discussion, that is:

X(w) :=inf{te R, F(t) > w}:(0,1) > R.

Then X is a random variable, because X is Borel measurable (we have seen that it
is non-decreasing and left continuous) and px = u, because as we have seen:
P(X € (a,b]) =m({we (0,1),a < X(w) < b}
=m{we (0,1),F(a) <w < F(b)} =F(@®)—F(a) = p((a,b]).
O
Remark 9.12. If there exists f > 0 measurable such that px ((a,b]) S

we say that X (or px) has a density (with respect to Lebesgue measure) nd f
is called the density function.
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Example 9.13 (Some examples of Borel probability measures on R). .

(1) the uniform distribution on [0,1] has density f(x) = 1jo,1] and distribution
function F(t) = St_w f(x)de = tlpg 4.
(2) the exponential distribution with rate A > 0 is defined as
fl@) =AM 1yz0,
while F(t) = 1;50(1 — exp(—t/)).
(3) the gaussian distribution with standard deviation o > 0 and mean m is
defined by its density
1 (x —m)

A wide-spread short-hand for the gaussian distribution is N'(m,o?).
(4) the Dirac mass d,, at m € R is the probability distribution defined as:

5m (A) = lmGA

for any Borel subset A c R. Its distribution function is Heavyside’s function
Hm(t) = 1t>m-

Definition 9.14. If X is a random variable (on a probability space (2, F,P)) we
define
(1) E(X) its mean (well-defined if X is P-integrable, i.e. if E(|X]|) < o),
(2) E(X*) its moment of order k € N (well-defined if X* is integrable),
(3) Var(X) = E(X?) — E(X)? = E((X — E(X))?) its variance (well-defined if
X2 is integrable).

Remark 9.15. If f > 0 is Borel measurable, then E(f(X)) = { f o X (w)dP(w) =
§ f(z)dux(x), because px = X,P.

2
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Lecture 11

10. INDEPENDENCE

Today we discuss a central notion on probability theory, that of independence.
This notion gives a distinctive flavour to probability theory, which, until now could
have been mistaken for a sub-branch of measure theory.

Definition 10.1 (independence of events). Let (2, F,P) be a probability space. A
sequence of events (A;)i=1 is called mutually independent if for every finite subset
F < N we have

P(() 4) =[P4 (10.1)
ieF ieF
Remark 10.2. If (A4;);>1 is an independent sequence of events, then so is (B;)i>1,
where for each i, B; is either A; or its complement A{. This is easily checked, for
example by writing P((,cr Bi) = E([ L;cr 1B,), where 1p, is either f; or 1 — f; with
fi == 14,, and then expanding the product.

Definition 10.3 (independence of subalgebras). A sequence of o-subalgebras (A;)i=1
(A; < F) is called mutually independent if for any event A; € A; the sequence of
events (A;); is mutually independent.

Remark 10.4. Remark 10.2 above shows that if (4;);>1 is an independent family
of events, then the sequence of subalgebras (A4;);>1 where A; = {@, A;, AS,Q}
forms an independent sequence.

Remark 10.5. A sooped-up version of the last two remarks is as follows. If II; < A;
is a m-system with o(II;) = A; for all 4, then it is enough to check (10.1) for A;’s in
I1; to be able to claim that the (\A;); form an independent sequence. To see this (say
in the simple case when there are only two subalgebras) consider, for some event
Ay € TI; the maps A — P(An A;) and A — P(A)P(A;) and note that they both
are measures on ({2,.4;) with the same total mass and that they coincide on the
m-system . Hence by Dynkin’s lemma, they must coincide on As, so that (10.1)
holds now for all Ay € II; and all As € As. Then apply this argument one more
time using the m-system II; instead and conclude that (10.1) holds for all 4; € A
and all A € As. A similar argument handles the general case of an arbitrary family
of subalgebras.

Notation 1. If X is a random variable, we will denote by o(X) the smallest o-
algebra of F making X A-measurable, that is:

o(X) :=0c({we Q, X(w) < t}er)-

Definition 10.6. A sequence of random variables (X;)i>1 is called (mutually-)
independent if (0(X;))i=1 is mutually independent.

Remark 10.7 (independence and product measure). By the previous remark, this
is equivalent to asking that for every finite subset F' of indices and all ¢; € R,

P(X; <t;Vie F) = 1_[ P(X; < t)
el
or equivalently
(X e Xay) = MXs @ @ px,,

it I = {i1,...,4q}, where the above is the product of the laws px, of the X;’s, and
(X, ..., X, is the law of the Ré-valued random vector (X;,, ..., X;,).
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So independence of two random variables can be read off the probability dis-
tribution of the pair: two random variables are independent if and only if the
distribution of the pair is the product of the two individual distributions.

Remark 10.8. If f; is a measurable function for each index i, and (X;);>1 is
a sequence of (mutually-) independent random variables, then (f;(X;)); is also a
sequence of independent random variables. This is clear, because o(f(X)) < o(X)
for any random variable X and any measurable function f.

Proposition 10.9. If X,Y are independent non-negative random variables, then
E(XY) =E(X)- -E®Y).

The same holds if X and Y are independent and integrable (and this implies that
XY is integrable).

Proof. This is an instance of the Fubini-Tonelli theorem applied to the function
f(x,y) = zy on [0, +00)? with the measure HX,y) = Hx ® fy. O

Example: (Bernstein’s example) This example shows that pairwise independence
does not imply mutual independence. Let X,Y be two independent coin tosses.
That is X,Y € {—0,1} and
1

P(X=O)=P(Y:()):P(X=1):P(Yzl)zg.
Let Z := |X —Y|. Then it is straightforward to check that each of the pairs
(X,Y), (Y,Z) and (X, Z) is an independent pair. But the triple (X,Y, Z) is not
an independent triple, because:

P(Z=0)=P(X=Y) =

while
P(X,Y,2) = (1,1,0)) =

1=

and

PX=1landY =1)P(Z=0)= - #

oo | —
RNy

Example: decimal expansion. Let Q = (0,1), P = m = Lebesgue measure, and
F = B(0, 1) the Borel o-algebra. Clearly (£, F,P) is a probability space.

Given w € (0,1) we may look at its decimal expansion w = 0.ej€z..., where
en € {0,1,...,9}. There is the usual indeterminacy of course that takes place when
w is a decimal number, i.e. of the form a/10° for integers a, b, in which case there
can be two decimal expansions one of which ends with an infinite string of 9’s: in
that case, we can choose one of the two expansions, e.g. avoid infinite strings of 9.

Now set X,,(w) = €,. This becomes a sequence of random variables on (2, F,P)
(it is plain to check that X, is measurable).

Claim: The (X,),’s form a sequence of independent random variables that are
uniformly distributed in {0, 1, ..., 9}.

In particular this means that P(X,, = i) = {5 for each n > 1 and i € {0, ...,9}.
The claim is easily checked: the set of w’s such that X,,(w) = 4 is a union 10"~! of
intervals of length 107", So we see that

1 n
P(X; =4, and X3 =is and ... and X,, =1i,) = Tom = P(X; =1,),
j=1

which means that the (X,,),’s are independent.
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Note that

Xn(w)
W= Z 10n
n=1

for all w e (0,1).

Remark 10.10. It turns out that this is another way to build the Lebesgue measure
on R. Pick independent and uniformly distributed random variables X, on {0, ..., 9}
on some probability space (€2, F,P) and define a random variable

Y = &
107

n=1

Then, as the above example demonstrates, the law of Y is precisely the Lebesgue
measure on (0,1).

As an aside, one may further ask how to construct such a sequence (of inde-
pendent random variables) from scratch? (in the example, we have defined such
a sequence of independent variables, but our construction made use of Lebesgue
measure). The following proposition enables us to find a single probability space
on which to find a sequence of independent random variables with prescribed laws:

Proposition-Definition 10.11 (infinite product measure). Let {(£2;, F;, vi)}is1
be a sequence of probability spaces. Let Q = [];-, Q. Let C be the Boolean algebra
of cylinder sets, namely subsets of the form B := Ax][._, %, where A H?Zl Q,
belongs to the product o-algebra F1 ® ... Q F,. Finally let F = o(C). Then there
exists a unique probability measure v on (Q, F) such that

vV(B) =1 ®...Q0u,(A),

for every cylinder set B = A x []... Q; as above.

>n
Proof. Apply Carathéodory’s extension theorem. See the 2nd example sheet. [

Now if u; is a Borel probability measure on R, then we know by Proposition 9.11
that there exists a random variable Y; on ((0,1),B(0,1), m) whose law is precisely
wi- If we let Q; = (0,1), F; = B(0,1) and v; = m the Lebesgue measure, then we
may form the infinite product Q@ = [[€; as in the previous statement. Now we
may set X;(w) =Y, om;, where ; : Q — €; is the projection to the i-th coordinate.
This will yield an infinite sequence (X;); of independent random variables on the
same probability space (€2, F,P) such that X; has law p; for each .

Remark 10.12. The above is a special case of a more general theorem of Kol-
mogorov, the Kolmogorov extension theroem, that asserts that any family of mea-
sures fi,, defined []] ; and satisfying a necessary compatibility condition (the
projection of p, to the first m coordinates is assumed to coincide with p,,) gives
rise to a unique measure on the infinite product, whose restriction to the cylinders
coincide with the p,,’s.

We now pass to the Borel-Cantelli lemmas: let (2, F,P) be a probability space
and (A4,,)n,>1 a sequence of events.

Lemma 10.13 (1st Borel Cantelli lemma). If >, _, P(A,) < o, then
P(limsup A,) = 0.
The limsup of a sequence of events is the event A such that 14 = limsup,, 14, .
In other words

limsup A,, := {w € Q,w € A, for infinitely many n}.

The next result is a sort of converse:
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Lemma 10.14 (2nd Borel Cantelli lemma). If >} -, P(A,) = © and the (A,)n>1's
are mutually independent, then

P(limsup 4,) = 1.

Proof of both lemmas. (1) E(};,, 14,) = 2., P(An) < o0, so P(};, 14, = ) = 0.
This proves the first lemma.
(2) (limsup,, An)¢ = Uy Npsn A5, 50 exploiting the independence of the events
(and using Remark 10.2) we may write for any N < M:
M M
P([] 40 <PC () A9 = [ —P(4n)) < exp(= X P(4n)
n=N N<n<M N N
as 1 —x < exp(—=z) for all z € [0,1]. But the right hand side tends to 0 as M tends
to +c0. So we get P([),-n Ar) = 0 for all N, hence P(limsup,, A,) = 1. This
proves the second lemma. O

The independence assumption in the second lemma can be relaxed. For example
it holds assuming only pairwise independence, while an even weaker assumption
(small correlation between the events) implies that the limsup,, A, has positive
probability. See the 3rd Example sheet.

Example: the infinite monkey theorem. Imagine a monkey frantically typing at ran-
dom on a typewriter. What is the probability that he will eventually type the Song
of Songs? Answer: 1. Indeed the Song of Songs is a finite, say of length N, string
of characters (in its English translation that is, and the typewriter is assumed to
offer all the letters of the Latin alphabet). So if A, is the event: “the string from
the nIN + 1-st character to the (n + 1) N-th character is exactly the Song of Songs”,
then the A,’s are (or quite close to be) independent events. And each happens
with probability K—V, where K is the number of keys on the typewriter. So the
series Y, P(A,) diverges and hence P(limsup, A4,) = 1.
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Lecture 12

Definition 10.15. Let (2, F,P) be a probability space.

(a) a sequence of random wvariables (X,)n>1 4s called a random (or stochastic)
process.

(b) the o-algebra F,, := o(X1,...,Xy) (which, by definition is the o-algebra gen-
erated by the events {w € Q, X;(w) < t;} for any i and t; € R) is called the n-th
term of the associated filtration. We have F,, € F,11 < F for alln,

(c) the o-algebra T := (1,51 0(Xn, Xnt1,...) is called the tail o-algebra of the
process. Its elements are called tail events.

Example: the events “(X,,), converges” or “limsup,, X, = T” are tail events.

Theorem 10.16 (Kolmogorov 0-1 law). Let (X,,) be a family of (mutually inde-
pendent random variables. Then for all A€ T we have

P(A) € {0, 1}.
Proof. Let A€ T. Given n consider B € 0(Xy,...,X,). Then
P(An B) =P(A)P(B) (10.2)

because T is independent of B. Let now F,, := o(X1,...,X,) and Fyp, :=0(X1,..., Xpn,...).
So the measures B — P(A)P(B) and B — P(A n B) coincide on | J,, F,. As this is

a m-system generating F,,, the measures coincide on Fy. This means that (10.2)

holds for all B € Fy. But T < Fy. So it actually holds for B = A. This means:

P(A) = P(4)?,
or in other words P(A) € {0, 1}. O

Example: Let (X,), be a sequence of i.i.d. (that is independent and identically
distributed) random variables with common law g (a Borel measure on R). Assume
that for all T > 0 we have P(X; < T) < 1. Then limsup,, X,, = +00 almost surely
(that is P({w € Q,limsup,, X, (w) = +©0}) = 1).

Indeed, to see this note that by Kolmogorov’s 0—1 law, we have P(limsup,, X,, =
+00) € {0,1}. But >, P(X, > T) = +co for all T. So by the 2nd Borel-Cantelli
lemma we must have P(limsup,, X,, = T) = 1 for all T. Hence P(limsup,, X,, =
+o0) = 1.

Example (Very well approximable numbers):

Definition 10.17. A real number « € [0, 1] is called very-well approximable (VWA)
if there exists € > 0 and infinitely many q € Z\{0} such that |qa| < 1/¢**¢, where
|| := infpez |z — nl.

Proposition 10.18. Lebesgue almost every a € [0, 1] is not VWA.

Proof. Fix e > 0. Let Q = [0, 1], P Lebesgue measure, F the Borel o-algebra. Let
Ay i={a€e|0,1],|qa| < 1/¢'T¢}. Then P(4,) < q1/¢*T, so Yg>1 P(4g) < o0 and
hence, by the first Borel-Cantelli lemma, P(limsup, 4,) = P(“a is VWA”) =0. O

Here are three useful probabilistic inequalities:
(1) Cauchy-Schwarz: Let X,Y be two (real valued) random variables on a proba-
bility space (2, F,P). Then

E(IXY]) < VE(XZE(V?).
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(2) Markov’s inequality: If X > 0 is a non-negative random variable, and A > 0,
then

AP(X = \) < E(X),
(3) Chebychev’s inequality: Let Y be a random variable, and A > 0, then

MP(Y —E(Y)| = \) < Var(Y).

The proofs are straigtforward. Recall that the proof of Cauchy-Schwarz is a
consequence of the fact that E((¢|X| + |Y])?) is a quadratic polynomial in ¢, which
is always non-negative: this implies that the discriminant A = 4((E(|XY])? —
E(X?)E(Y?)) is < 0, which yields the Cauchy-Schwarz inequality.

The proof of Markov’s inequality is clear: E(X) = E(X1xs)) = AE(1xs)) =
AP(X > X). And the proof of Chebychev’s follows from Markov’s applied to X =
(Y — E(Y))? and recalling that the variance Var(Y) is equal to E(Y?) — E(Y)? =
E(X).

The Markov and Chebychev inequalities are extermely useful to get upper bounds
on the probability that a random variable is large, or deviates from its mean by a
certain amount. Indeed it is often easier to estimate the expectation E(X) or the
variance Var(Y), rather than to directly compute the probabilities on the left hand
side of these inequalities.

We now prove a landmark result from probability theory, the law of large num-
bers:

Theorem 10.19 (Strong law of large numbers). Let (X,,)n>1 be a sequence of i.i.d.
(i.e. independent and identically distributed) random wvariables with common law
v (= a Borel measure on R). Assume that o |x|du(x) = E(|X1|) is finite. Then,
almost surely,

1 n
— > X, —»nor0 E(X7) = | zdp(x).

2 X B = | i)
Proof. We give a short proof under the additional assumption that X; has a finite
moment of order 4. The proof assuming only a finite moment of order 1 is much
more involved. We will eventually give a proof of it at the end of the course, as a
corollary of the pointwise ergodic theorem. So let us assume that E(X{) < oo.

Without loss of generality, we may assume that E(X;) = 0. Indeed we may set
Y; = X; — E(X1) and apply the result to Y; instead (note that this is legitimate,
because the Y;’s will also be i.i.d. and will have a finite moment of order 4, because
E(YY) < E(Y?)? < E(X?)? < o0 by Cauchy-Schwarz.

Note further that X; has a finite moment of order 1, 2 and 3, i.e. X;,X? and
X3} are integrable. This is because E(|X1]) < 4/E(X?) by Cauchy-Schwarz, while
E(X?) < /E(X}) and E(X}) < A/E(X?)E(X}{). (in fact it is not hard to prove
that finiteness of a moment of order k£ implies finiteness of all moments of order
< k).

Then we set S,, = Z? X; and compute

E(Sp) = > E(XiX; X X))
i,7,k,l

Exploiting independence of the X;’s and the fact that E(X;) = 0, we see that all
terms vanish, except of the terms X and the cross terms X?X 32 This leads to

E(SY) = i E(X}) +6 ) E(X7X7)

1<j
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By Cauchy-Schwarz again, we have E(X?X?) < 4/E(X])E(X}) = E(X{). So

E(S%) < (n+ 3n(n — 1))E(X})
and hence
E((Sn/n)") = O(1/n?),
which yields the convergence of the series
DIE((Sn/m)") = E(Q(Sn/n)h).

Clearly this means that almost surely the series Y, (S,/n)* converges, and hence
that almost surely S,,/n tends to 0 as desired. O

The word “strong” refers to the fact that the convergence holds almost surely
(i.e. P-almost everywhere). There is also a weak law of large numbers, in which the
convergence holds in a weaker sense (in probability) under a weaker assumption on
the sequence (X,,),, see the Example sheet.
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Lecture 13

11. CONVERGENCE OF RANDOM VARIABLES

Given a sequence of random variables (X,,),, there are several different and non
equivalent ways in which one may express the fact that they converge. The weakest
type of convergence is called the “weak convergence” or “convergence in law”.

Definition 11.1. A sequence of probability measures p, on (RY, B(R?)) is said to
converge weakly to a measure p if for every continuous and bounded function f on
R? we have:

pn(f) =notoo p(f)- (11.1)
Examples:
(1) ptn = 61/ is a sequence of Dirac masses at 1/n. Clearly u, converges weakly
to &g, because f(1/n) — f(0) by continuity of f.
(2) pn = N(0,02) a centered gaussian distribution with standard deviation
op such that o, — 0. Then u, — Jy as well, as follows from dominated
convergence:

pn(f) = Jf(m) exp(—z%/20,)/2n02dx = Jf(crnas) exp(—z2/2)/V2rdx — f(0).
(3) pn = =7 | 8. converges weakly to the uniform distribution on [0, 1].

Definition 11.2. A sequence of R%-valued random variables on a probability space
(Q, F,P) is said to be converging to X
(a) almost surely (or a.s.) if for P-almost every w € Q we have X, (w) — X (w),
(b) in probability (or in measure) if for all e > 0, as n — +o0,
P(| X, — X| >¢€) — 0,
(c) in law (or in distribution) if pux, converges weakly to px.
Recall that px is the law of the random variable X, namely the Borel measure

on R defined by pux(B) = P(X € B). Here the norm |z| is the Euclidean norm on
R? (or any other norm for that matter). We now show that (a) = (b) = (c).

Proposition 11.3. If a sequence of random wvariables (X,), converges almost
surely to X, then it converges in probability to X. If a sequence converges in
probability, then it converges in distribution.

Proof. (a) = (b). Write:
P(”Xn - XH > 6) = E(lHXanH>5> —n—to0 0
by Dominated Convergence.
For (b) = (c), first note (recall Part IB) that every continuous and bounded

function f on R? is uniformly continuous on compact subsets. Recall that this
means that for every e > 0 there is 6 > 0 such that if |z| < 1/e and |y — 2| < 4,

then |f(2) — f(y)| <e So

lux, (f) = px(f)] = [E(f(X5)) — E(f(X))]
S EQyx, —xj<slixi<i/el f(Xn) = F(X)]) + 2 B x, —x 25 + 1 x)21/¢)
< e+ 2| flo(P(|X = Xy| = 6) + P(| X[ = 1/€))

where we have denoted as usual ||f|o := sup,cg |f(z)|. Letting n tend to infinity,
this gives:
limsup |px, (f) = px (/)] < €+ 2] floP(IX] = 1/€).
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Finally letting e — 0, we obtain the desired conclusion (weak convergence of px,
towards px.
O

Remark 11.4. When d = 1, i.e. for real valued random variables, there is a
further characterization of convergence in law in terms of the distribution functions
Fx(z) = P(X < z). Namely: X,, —» X in law if and only if Fx,  (z) — Fx(z) for
every x where Fx () is continuous. See the 3rd Example Sheet.

Remark 11.5. To prove that a sequence of probability measures u, converges
weakly to a probability measure p, it is enough to check (11.1) for smooth and
compactly supported functions f on R? (exercise! or wait for the 4th ex. sheet).

Remark 11.6. The converse statements to those of the last proposition do not
hold. For an example showing that (¢) does not imply (b) consider a sequence of
i.i.d. random variables X,, with common law i and assume that p is not a Dirac
mass. Clearly px, converges to ux, because px, = px = p for all n. However
P(| X, — Xol|| > €) is independent of n > 1 and non-zero if € is small enough, because
1 is not concentrated on a single point.

To see an example showing that (b) does not imply (a) consider the moving
bump examples already discussed: © = (0,1), P Lebesgue, F = B(0,1) and Xy ,, =
Lik/n,(k+1)/n] for k = 0,...,n—1. This is an array of random variables, that you may
of course organize in a single sequence Y;, so that Xy, comes right after Xy, ,,
and Xo 41 right after X,,_1 . Then it is clear that for every w € €1 the sequence
Y, (w) does not converge (it will take the value 0 and the value 1 infinitely often).
But P(]Y,,,| > €) tends to 0 as m tends to infinity, because P(|Xk,| > €) = 1/n if
e€ (0,1).

Proposition 11.7. If X,, — X in probability, then there is a subsequence {ny}
such that

Xnk —k—+40w X
almost surely.

Proof. The assumption says that P(|X,, — X| > €) — 0 as n — +o0. So for every
k € N, there is ny, such that P(|X,, — X| > 1/k) < 1/2*. Hence

D IP(|Xn, — X| > 1/k) <o
k

and by the first Borel-Cantelli lemma we know that with probability 1
#{keN,|X,, — X| > 1/k} <o
Hence limy—, 1o | Xpn, — X[ = 0. O

We have seen so far three types of convergence: in law, in probability and almost
sure. Here is a fourth:

Definition 11.8. A sequence of integrable random variables (X, ), is said to con-
verge to X in L' if
E(|Xn — X[) =note0 0.

[Recall that a random variable Y is said to be integrable if E(]Y|) < co. ]

This notion is stronger than convergence in probability, but it does not imply
almost sure convergence, nor is it implied by almost sure convergence. In fact we
will soon examine in detail the difference between convergence in probability and
convergence in L', this will rely on the notion of uniform integrability.

Proposition 11.9. If X,, — X in L', then X,, — X in probability.
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Proof. This is clear from the Markov inequality:
1
P([Xn — X[ > €) < ZE(|Xn — X])).
O

Remark 11.10. The converse is not true: again take Q = (0,1), F = B(0,1) and
P Lebesgue measure, and X, := nl[g 1/,]. Clearly X,, — 0 almost surely and hence
in probability, but E(X,,) = 1 for all n.

Note however that in this example X,, is not bounded. If X, is bounded (i.e.
| X,| < C for some C > 0 independent of n), then convergence in probability implies
convergence in L! (and hence is equivalent to it): indeed if not there would be € > 0
and a subsequence {ny} such that E(||X,,, — X|) > € for all k. But one may then
pass to an even finer subsequence that convergences almost surely by Proposition
11.7. This would contradict the Dominated Convergence Theorem. We are now
going to define the right necessary and sufficient condition for us to be able to

upgrade convergence in probability (or almost sure convergence) to convergence in
L.

Definition 11.11. A sequence of integrable (R%-valued) random variables (X,)n
is said to be uniformly integrable (or U.I for short) if

i lim sup E(| 11)x,>1)

Examples

(1) If (X,,)n is dominated in the sense that there is a random variable Y > 0,
which is integrable, and such that

Xl <Y
for all n, then (X,,), is uniformly integrable. Indeed
E(IXnl1)x,150) S EY1ysm)

and the right hand side tends to 0 as M — +0o0 by Dominated Convergence.
(2) Given p € [1, +], we say that a sequence (X,,), is bounded in L” if

sup E(| Xa|?) < .

If (X,), is bounded in L? for some p > 1, then (X,,), is uniformly inte-
grable. Indeed, we may write:

E(1Xnl1)x,1>0m) <

1 1
WE(HXan) S i Sup E(] Xn[7)

But p > 1, so the right hand side tends to 0 as n — +oo0.
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Lecture 14

The main reason for introducing the notion of uniform integrability lies in the
following theorem.

Theorem 11.12. Let (X,,), be a sequence of (R%-valued) integrable random vari-
ables. Let X be another random variable. Then the following are equivalent:

(i) X is integrable and X, — X in L1,
(i) (Xn)n is uniformly integrable and X,, — X in probability.

We will need:

Lemma 11.13. IfY is an integrable random variable and (X,,), is U.L, then so
is (Xn +Y)n.

Proof. This follows from the following calculation:

E(IXn + YIx, +vi=a) < E(([Xnl + 1Y DY x, 4y =0 (U x, =072 + Lx,<ar/2))
SE((@n + 9)la,>m/2) + E(Tn + Y)1yznr2le, <n/2)
< E((@n +9)1a,>0/2) + EQyly=1)2)
< EQRrply, >my2) + EBylysn2)

where we wrote x,, for | X, | and y for |[Y'|. In the second line, we used the triangle
inequality so that 1) x tyvi=m1jx,|<m/2 < Ly =m/2l)x,|<M/2- 0

Proof of Theorem 11.12. (i) = (ii). We know that X,, — X in probability, because
it converges in L! (see Remark 11.9). But (X,, — X),, is clearly U.L, because it
tends to 0 in L'. By Lemma 11.13, we conclude that (X,,), is U.L

(i) = () Let us first check that X must be integrable. By Proposition 11.7,
there is a subsequence {ny}; such that X,,, — X almost surely. By Fatou’s lemma
we get:

E(IX 1z ) < i inf E(| X [1)x,, j20),
which by assumption tends to 0 as M tends to +c0 and is in particular finite. Hence
E(IX1) < E(X[1yx)=0) + M < 0.

By Lemma 11.13 we have that (X,,—X),, is U.I. Now assume by way of contradic-
tion that X,, does not converge to X in L!. Then there is € > 0 and a subsequence
{nr}r such that E(|X,, — X|) > € for all k. By Proposition 11.7 (given that X,

tends to X in probability), we may pass to an even finer subsequence and assume
wlog that X,,, — X as k — +o0. Since (X, — X),, is U.L there is M > 0 such that

limksup E(H)(mC — XH1\|Xnk*XH>M) <€

But by Dominated Convergence:

limksup E(| X, — XHluxnk—XKM) =0

We conclude that
limsup E(| X,, — X|) <e¢,
k

which is a contradiction.
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12. LP SPACES

We begin with three inequalities of fundamental importance in Analysis.

(1) Jensen’s inequality

Proposition 12.1 (Jensen’s inequality). Let (2,.A,P) be a probability space and
I an open interval of R and X : Q — I be a random variable. Assume that X is
integrable and ¢ : I — R is convex. Then

E(o(X)) = o(E(X)).
Recall:
Definition 12.2. A function ¢ : I — R is said to be convez if Vx,y € I and for all
t € [0,1] one has:
otz + (1 —t)y) < to(x) + (1 —1)o(y).
Remark 12.3. E(X) € I clearly and we will show that E(¢(X)™) < oo, where ¢~ is

the negative part of ¢. So E(¢(X)) is always well defined as E(¢(X)1) —E(¢(X) ™)
even though ¢(X) may not be integrable.

In order to prove Jensen’s inequality we require:
Lemma 12.4. A function ¢ : I — R is convex if and only if

¢ = sup/
leF

where F is some family of affine linear forms x — ax + b (for various a,b e R).

Proof. The “if” part is clear, because each ¢ is convex, and hence so is their
supremum. For the “only if” part note that for each xy € I we need to find
Lo () = Op(x — 20) + P(x0) With 0., € R such that ¢(z) = £, (x) for all z.
Observe that since ¢ is convex, for all z,y with < z¢o < y we have

¢(z0) — ¢(x) _ dly) — o(wo)
To— T S oy—zg
indeed this is equivalent to ¢(xg) < to(x) + (1 —1t)p(y) for t = (xo — x)/(y — ). So
there exists 6 € R such that for all x,y with x < zg < y we have:

¢(0) — () <h< P(y) — ¢(i1?0).
o — T Yy —To
So just set £y, (x) = 0(z — o) + &(z0) and get () = Ly, (). O

We can now prove Jensen’s inequality:

Proof of Proposition 12.1. Write

P(X) = iggf(X)

and for all £ € F,

So

as desired.
Besides, —¢(x) = infper —€(x), so

(X)) < | = UX)| < [UX)| < alX] +b,
so ¢(X)~ is integrable.
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Lecture 15

Definition 12.5 (LP-norm). Let (X, A, ) be a measure space and f: X - R a
measurable map. For p € [1,+0), we set

1
o= [ 1opan] ™,
X
while for p = oo
I flleo = essup|f| := inf{t = 0,|f(z)| <t p—a.e.}.
Example: if (X, A,u) = (R,£,m) and f = 1+ 1,-0, then sup,.yx |f(z)| = 2, but
Hf”oo =1

Remark 12.6. Note that for any measurable f, there is another measurable func-
tion g such that f = g pra.e. and |f|lo = sup,ex |g(x)]. Indeed take g(z) =

F@L )< fle

(2) Minkowski’s inequality

Proposition 12.7 (Minkowski’s inequality). In this setting, for any p € [1,+0]
we have:

If +glp < [flp +l9lp-

Proof. The case when p = +o0 is obvious. So assume p is finite. Note that the
inequality is equivalent to

f g
g, + O O e <
where
Ul
7T, + IaT

This means that we need to show that for every t € [0,1] and every measurable
functions F' and G on X with ||F'|, = |G|, = 1 we have:

[tF+ (1 -G, <1
or in other words
J tF + (1 — GPdu < 1.
b's
But x — 2P is convex in [0, +00) if p = 1. So we have:
[tF 4+ (1 —t)GIP < |t|F|+ (1 —¢)|G)? < t|F]P + (1 —1t)|G|P

Integrating over X, we obtained as desired:

f tF + (1 — )GPdu < 1.
X

(3) Holder’s inequality
Let p,q € [1,+0]. Assume that

1
e
P g
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Proposition 12.8 (Holder’s inequality). Let (X, A, 1) be a measure space and let
f, g be measurable functions. Then

| 1rslan< 111, 1al.
X

Moreover, when p and q are finite, if equality holds (and the terms are finite), then
there is (o, 8) # (0,0) such that «|f|P = B|g|? p-amost everywhere.

The case when either p or ¢ is infinite is obvious, by the positivity property of

the p-integral: |fg| < | f]|g| holds p-a.e., hence p(|fg]) < | fllwop(lg]). So wlog we
can now assume that p and ¢ are finite. For the proof, we need:

Lemma 12.9 (Young’s inequality for products). Let a,b > 0, then

a? bl
ab < — + —,
p q

with equality if and only if aP? = bY.

Proof. the function — log is strictly convex, so

log(Y + 2y < L(C1og)(a?) + L(—1og) (49) = —logad
—log(— + —) < = (—log)(a —(—1o = —logab,
gp p ? g p g g

with equality if and only if a? = b9. O

Proof of Proposition 12.8. Without loss of generality we may assume that §, |f[Pdu #
0 and that SX lg|%dp # 0. Otherwise either f or g is zero p-almost everywhere and
the inequality is trivial. Similarly, we may further assume that both | f], and |g|,
are finite. By further multiplying f and g by a scalar multiple, we may assume
that |f|, =1 and |g|, = 1. Now we are in a position to apply Young’s inequality
for products (previous lemma):

p q
7l < M 1o (12.1)
p q

And integrating, we get:
1 1
f [fgldp < =+ - =1
X p q

as desired. To see the equality case, note that it implies that (12.1) holds u-almost
everywhere, and thus that |f|? = |g|? almost everywhere.
O

Remark 12.10. (1) When p = ¢ = 2 Holder’s inequality is also known as
Cauchy-Schwarz (which we have already seen for random variables, but it
also holds when p is not a probability measure).

(2) Jensen’s inequality implies that if X is a random variable, then the function

p— E(|X[P)/P

is non-decreasing. Indeed set ¢(x) = x9/P_ which is convex if ¢ > p and
apply Jensen’s inequality to it.

Definition 12.11. We set LP(X, A, p) := {f : X — R measurable, || f||, < c}.

Note that LP(X, A, u) is a vector space (this follows from Minkowski’s inequality
when p is finite).

Let us introduce the following relation among measurable functions on a measure
space (X, A, n). We will write f = g is f(z) = g(z) holds p-almost everywhere.

Lemma 12.12. The relation = is an equivalence relation, which is stable under
addition and multiplication.
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Proof. Clearly if f = g and g = h, then f = h, so the relation in transitive and
hence an equivalence relation. It is also clear that if f/ = ¢/, then f+ f' =g+ ¢
and ff =gq'. d

Definition 12.13. The LP-space associated to the measure space (X, A, ) is the
quotient space LP(X, A, ) mod =.

In other words it is the set of equivalence classes [f] (up to p-measure zero) of
functions f with finite £P norm. The main reason why we pass to this quotient
is that on the quotient the £P norm becomes a genuinue norm. The value |f,
depends only on the class [f] of the function and not on the function itself, i.e. if
f =g, then ||f|l, = |lgll,- So it makes sense to talk about |[f]|, and we have that
I[f]llp = 0 implies [f] = 0. Thus we have:

Proposition 12.14 (Completeness of LP-spaces). For p € [1,+o] the norm | - |,
turns LP (X, A, p) into a normed vector space. Moreover it is a complete normed
vector space (a.k.a. a Banach space).

Recall that complete means that Cauchy sequences converge.

Proof. If f = g, then | f|, = |gllp, to | - |, descends to LP.

If | f|l, = 0, then f = 0 by the properties of the p-integral.

The triangle inequality holds | f + g[, <[y + [g]p, by Minkowski’s inequality
when p is finite and clearly when p = +o0. Also |Af[, = |Al[|f], for all A e R.

So all this makes L? a normed vector space. It remains to show completeness.
We first handle the case when p is finite. So suppose ([f,])n is a Cauchy sequence
in L?. This means that for all € > 0 there is ng > 0 such that for all n,m > ng we
have ||f,, — fm|, < €. We set € = 27% for an arbitrary integer k > 0. Then there is
ny such that for all £ > 0

ank+1 - fnk H < 27]9'
Let

K
SK = Z ‘fnkJrl _fTLk|
k=1
Then

K
1Skl < D 27% <1,
k=1
by Minkowski’s inequality. So by Monotone Convergence we get

f S (@) P i) — ks son f S|P
X X

and so Sy, € LP and for p-a.e. © we have Sy (z) < 0o. This means that

+00
Z |fnk+1(x) - f"k- (.CE)| <
1

and hence that (f,, (z))x is itself a Cauchy sequence in R. But R is complete, so
limg o0 fn, (%) exists in R. Call it f(z). This was defined only on those x such
that Sy (x) < 0. On the complement of this set (which is of y-measure 0) we can
set f(z) = 0. Then

I = Flp < Ymminf [ o = fu,ly < e
by Fatou’s lemma. This holds for all n > ng. So we have shown that
tim [, — £l = 0.

Finally the case when p = 400 can be handled in a similar way, except that in
place of Fatou’s lemma we use the following:
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Fact: if f,, — f p-a.e., then ||f|o < liminf, || fnlco-

Proof: Let ¢ > liminf, ||f,]. Then there exists an increasing subsequence nj with

[frillo < t. In other words for all k, p-a.e. |fn,(z)| < ¢. Swapping the order

(Vkp-a.e. versus p-a.e. Yk, which is allowed by o-subadditivity of the measure p),

this implies that p-a.e. for all k we have |f,, (z)] < ¢. And hence that |f(z)| < ¢t.
U

From now on, we will often abuse notation and stop distinguishing between an
element of LP and a representative of that element, namely a function in £P whose
equivalence class is that element. This should not cause confusion, but we should
always keep in mind that elements in LP are equivalence classes.

The next proposition is a useful technical device when dealing with LP-spaces,
when p is finite (it fails when p = +o0).

Proposition 12.15 (Approximation by simple functions). Let p € [1,00) and
(X, A, 1) a measure space. Let V be the linear span of simple functions on (X, .A).
Then V n LP is dense in LP.

in other words: for every ¢ > 0 and every f € LP(X, A, u) there is g = gt — g~
with g% and g~ simple functions on (X,.A) such that g € £P and |[f — g[, <e.
Proof. Note that gt,g~ < |g|. Hence if g € LP, then g* and g~ belong to LP.
Writing f = fT — f~ and using Minkowski’s inequality it is enough to assume
that f > 0. We’ve shown (cf. Lemma 7.6) that there are simple functions g,, with
0 < gn < f and g,(x) — f(x) for every z € X. But we have

lgn — fIP < (2f)°

and the right hand side is integrable, so we may apply Lebesgue’s Dominated Con-
vergence Theorem to conclude that

J |gn — f|Pdp — 0.
X
O

Remark 12.16. When (X, A, 1) = (R%, £, m), then smooth compactly supported
functions C(R?) form a dense subspace in L? (see the 3rd example sheet).

Remark 12.17. (1) If u(X) < oo, then LP" < L if p/ > p (we have already
seen how this follows from Jensen’s inequality),
(2) if X is discrete and countable (i.e. A = 2%X), then L < L? for p/ < p,
(3) in general (e.g. when (X, A) = (R, L)) these inclusions do not hold (in
neither direction).
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Lecture 16

13. HILBERT SPACES AND L2-METHODS

Let V be a complex vector space (possibly infinite dimensional).

Definition 13.1 (inner product). A Hermitian inner product on V is a map:
VxV—-C
(z,y) = <z, y)
with the following properties

(i) {ax + By, z) = alx,z) + By, z) for all a,f € C and all x,y,z €V,

(ir) <y, x) = (w,y) for all z,y €V,
(111) for all x € V, {x,x) = 0 with equality if and only if x = 0.

Axioms (7) and (i7) make the inner product a sesquilinear form (“sesqui” means
one-and-a-half, it is linear in the first variable and skew-linear in the second, that
is {z, ay) = @z, y), where @ is the complex conjugate). Note that (i¢) implies that
{x,z) is always real.

For real vector spaces, one has the same definition, but of course in that case (%)
and (i7) simply mean that the inner product is a bilinear symmetric form, and the
inner product is then called a Euclidean inner product.

In what follows V' is a complex (resp. real) vector space endowed with a Her-
mitian (resp. Euclidean) inner product. For each z € V we set |z| := {(z, z).

Lemma 13.2. For any a € C and z,y € V we have:

(a) |az| = |of|z],

(b) (Cauchy-Schwarz inequality) [{x,y)| < ||z| - |y],

(c) (triangle inequality) |z + y|| < ||=| + |yl

(d) (Parallelogram identity) ||z + y||* + [|= — y|? = 2(|z|? + |y|?).

Proof. For (a) note that |z |? = {ax, ax) = |a|?|z||>. The proof of (b) is as follows:
for every t € R we have:

(@ +ty,z +ty) = *y|* + |z|* + 2Redz, y) > 0,

this is a quadratic polynomial in ¢ that does not change sign: its discriminant must
henceforth be non-positive, i.e. A < 0. But

A = 4(Re((z, ) — 4]z - |y
so we get

[Re((z, )| <[] - |1y

But for every 6 € R we have (¢, y) = €'z, y), so in particular, given x,y there
always exists some 6 € R such that (e?x,y) = [(x,y)|. We conclude that

Ko, )l = [Re((e™a, )| < ez - |yl = ] - lyl
as desired. To prove (c¢) apply (b) as follows:
o+ yl? < 2 + [y* + 2Re(C@, ) < (l2] + lyl)*.

The proof of (d) is straighforward: simply expand the inner product of the sum
and of the difference. O

Corollary 13.3. (V| -|) is a normed vector space.
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Recall that a normed vector space is simply a (real or complex) vector space
endowed with a norm, i.e. a map x — |z| from V to [0, +00) satisfying axioms (a)
and (c) above, and such that |z| = 0 if and only if x = 0.

A normed vector space is in particular a metric space, with the distance function
defined as |z — y||. Recall further that a metric space is said to be complete if all
Cauchy sequences converge.

Definition 13.4. A hermitian (resp. Fuclidean) vector space V is said to be a
Hilbert space if (V.| - |) is complete.

Example: Let V = L2(X, A, ) with inner product

Sy = | _san

This is well-defined, because as we have already seen (Cauchy-Schwarz) if both
f,g are in L2, then fg is p-integrable. It is plain to check that V then becomes
a Hermitian vector space with this inner product. And we have shown previously
that V is complete. So V is a Hilbert space. In fact it is the archetypal Hilbert
space, as it can be shown that every Hilbert space is isomorphic to an L? space.

Proposition 13.5 (orthogonal projection on closed convex sets). Let H be a Hilbert
space and C < H a closed convex subset. Then there is a well-defined orthogonal
projection to C. This means that for every x € H there is a unique y € C such that

|z —y| = inf{|z — ||, c € C}(=: d(=,()).
We call y the orthogonal projection of x onto C.
Proof. Pick ¢, € C such that |z — ¢, — d(z,C). By the parallelogram identity we

have:

T—Cp T —Cpm T — Cm [z — cn|? N [z — cml?

5 T —Cp 9
+ — =2 13.1
e e~ el )
in other words:
Cp +Cm Cn — Cm
ot empe om0 4 )
Since C is convex, “2Ef= € C, so we get:
o = L > d(e,C)

and it follows that |c, — ¢y | — 0 as n and m tend to infinity. Hence the sequence
(cn)n is a Cauchy sequence in H.

But we have assumed that H is complete. We conclude that the sequence (¢, ),
converges to a point y € H . Since C is closed by assumption, we must have y € C
and d(z,C) = ||l — y||.

This shows the existence of y. The uniqueness follows directly from (13.1) re-
placing ¢,, and ¢, by two minimizing elements. O

Corollary 13.6. If V < H is a closed vector subspace, then H =V ® V+, where
V= {zeH,(r,v)=0veV}.

Note: even if V is not closed, V' is always a closed subspace. Indeed if z, — =,
then (@, v) — {x,v), so

[z, v) =z, 0)] < lan — 2| - v

and z € V* if ,, € V1 for all n.
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Proof. Note that V n V+ = 0, because (x,z) = 0 implies = = 0.
Let now = € H and y its projection to V as given by Proposition 13.5 Claim:

r—ye V™, Indeed for all z€ V we have |z —y — 2| = | —y| asy +z€ V. So

le = yl* + |2]* = 2Relx — y, 2) > |z — y|
and hence
2Re(z —y,2) < 2|
for all z € V. In particular for all ¢ > 0,
2Re(x — y,t2) < 2] 2)?,
which letting t — 0 yields:
Re{z —y,2) < 0.
But this holds for all z € V' so in particular for —z, and hence Re{z — y, 2) = 0.

Changing z into e¢'? for a suitable angle 6 € R, we finally get (x — v, 2) = 0. Hence
z—yeVt. O

Let H be a complex Hilbert space.

Definition 13.7. A linear form £ : H — C is called bounded if 3¢ > 0 such that
[£(z)] < cf]
for all z e H.

Remark: a linear form is bounded if and only if it is continuous (an easy exercise!).
Of course if H is a real Hilbert space, then linear forms are assumed to be R-linear
only and take values in R.

Theorem 13.8 (Riesz representation theorem for Hilbert spaces). Let H be a
Hilbert space and ¢ a bounded linear form on H. Then there is a unique vector
vg € H such that

U(x) = (x, v0)
for all x e H.

Proof. Uniqueness is clear, because if vy and v are such, then by linearity of the
inner product {x,vyp — v{) = 0 for all z € H and in particular for z = vy — vy,
which yields vg — v, = 0. We now prove the existence part. By the last corollary
we have H = ker £ @ (ker £)*, because ker £ is a closed subspace of H (since ¢ is
continuous). We may assume that ¢ is not identically zero (otherwise set vy = 0).
Pick 2 € (ker £)\{0}. Then £(x() # 0 and

Claim: (ker ¢)* = Cuxy.

Indeed if x € (ker )", then £(z) = al(xg) with a := %. So l(x — axg) = 0,

that is  — axg € ker £ N (ker /) = {0}. Hence x = axy.

Now write: to)
xo
(x) — (x, x@w = {(x) — {x,vo),
where vy = x()%. This linear form vanishes on ker? and on zg, so also on

(ker £)* by the Claim above. Hence on all of .
U
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Lecture 17

14. CONDITIONAL EXPECTATION

We now define a fundamental concept in probability theory, that of conditional
expectation. Again the key to the proofs will be the existence of an orthogonal
projection in Hilbert space as established in the previous lectures.

Proposition-Definition 14.1 (Conditional expectation). Let (2, F,P) be a prob-
ability space and G = F be a o-subalgebra. Let X be a real valued integrable random
variable. Then there exists Y a G-measurable and integrable random variable such
that

E(14X) =E(14Y) (14.1)
for all A € G. Moreover Y is unique in the sense that if Y' is as above, then
Y =Y’ almost surely. The random variable Y is called the conditional expectation
of X with respect to G and is denoted by

Y = E(X|9).

Note that E(X|G) is a (G-measurable) random variable (while E(X) was just a
number). Intuitively E(X|G) is the average value of X “knowing” G, that is given
the information provided by G. A good way to understand the idea of conditional
expectation is to consider the special case when G is the Boolean algebra generated
by a partition of the universe ) into finitely many subsets from F, namely 2 =
|_|iv X;. Then E(X|G) is G-measurable, so it is constant on each X;. On X; it
equals the average value of X (w) knowing that w belongs to X;, that is

Y(w) = E(X[9)(w) = ﬁ JX(w)lxi (w)dP(w).

Indeed it is very easy to check that (14.1) does hold for this Y and for any A € G,
because A is then a finite union of X;’s.

Proof. (existence) We first prove the existence of conditional expectation assuming
that X has a finite moment of order 2. In that case Y will be the orthogonal pro-
jection of X onto the closed subspace L%(€2, G, P) of the Hilbert space L?(Q, G, P).
The fact that L2(Q, G,P) is closed follows from its completeness (this is an exercise
in Exple Sheet no 4). Recall that on this Hilbert space the inner product between
say W and Z is given by E(WZ). It is then clear that E(14Y) = E(14X).

Now assume that X is integrable and non-negative. Then we can truncate and
consider X,, = X1xg¢,. Then X, € L2 and we can let Y}, the orthogonal projection
of X,, onto L2(Q,G,P). It is clear that Y,,.; > Y, > 0 almost surely (indeed, for
example if we let A be the event where Y,,;1 < Y,,, then A is G-measurable, and we
get E((Yni1 — Yn)la) = E((Xn41 — Xn)1a) > 0, which forces (Y11 — Y,)14 =0
almost surely, or in other words P(A) = 0). So we can denote by Y = lim, ¥,, and
observe that my Monotone Convergence E(Y,,14) — E(Y'14) and hence E(Y14) =
E(X14). This shows the existence in this case.

In the general case, we may write X = X* — X~ andset Y =Y — Y, where
Y™ is a conditional expectation for X and Y~ for X .

(uniqueness) If Y7 and Y3 are two candidates, then E(14(Y; — Y2)) = 0 for all
A € G. But this forces Y7 = Y5 almost surely (this was an exercise in Example sheet
no 2.). O

We now list the key properties of conditional expectation:
(1) (linearity) if o, f € R and X,Y are random variables then almost surely

E(aX + BY|G) = aE(X|G) + BE(Y|G),
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(2) if X is already G-measurable, then E(X|G) = X a.s.
(3) (positivity) if X > 0 a.s., then E(X|G) > 0 a.s.,
(4) if H < G is a sub-o-algebra, then a.s.

E(E(X|9)[H) = E(X|H),
(5) if Z is a G-measurable bounded random variable, then a.s.
E(XZ|G) = Z-E(X|G),

(6) (independence) if X is independent from G, then E(X|G) = E(X) a.s.,

(7) the Monotone Convergence Theorem, Fatou’s lemma and the Dominated
Convergence Theorem continue to hold for E(:|G). (for example the ana-
logue of the MCT states that if X,,.1 > X,, = 0 and X,, converges almost
surely to X, then E(X,|G) converges almost surely to E(X|G), etc.)

Proof. The proofs are a simple application of Proposition 14.1. One uses uniqueness
and the defining property (14.1) to check that the properties hold almost surely.
For example to prove (3), set A = {w € Q,Y(w) < 0}, where Y = E(X|G); then
E(14Y) = E(14X) = 0, which forces 14Y = 0 a.s., and hence P(A4) = 0. Item (6)
follows from the fact that E(X14) = E(X)E(14) as X and 14 will be independent
if A e G. And the same for (7) : for A € G write E(14X,,) = E(14E(X,|G)),
then use the ordinary MCT on both sides to conclude that E(14X,,) converges to
E(14X) and that E(14E(X,,|G)) converges to E(1 4 lim, E(X,,|G)). The uniqueness
in Propostion 14.1 then implies that lim, E(X,|G) must be (almost surely) the
conditional expectation E(X|G). Fatou’s lemma and the DCT then follow from the
MCT by the same argument as in their original proof. O

15. THE FOURIER TRANSFORM ON R¢

We now take a break from probability theory to go back to analysis on R? and
present a fundamental tool: the Fourier transform on R?. This tool will be crucial
to establish later one of the corner stones of probability theory, namely the Central
Limit theorem. It will also be crucial when discussing the gaussian distribution and
gaussian vectors.

Recall that B(R?) is the o-algebra of Borel subsets of R?. We denote by dz the
Lebesgue measure on RY.

Definition 15.1. Let f € L'(R? B(R%),dx) and let u e R?. We set
flu) = f(z)e ™ d.
Rd

where (u,x) = Y u;x; is the standard Euclidean inner product. The function fis
called the Fourier transform of f.

~

Proposition 15.2. (a) |f(u)| < |f|1,
(b) uw f(u) is continuous.

Proof. a) is clear, b) follows from directly from the Dominated Convergence Theo-
rem: if u, — u, then the functions x — f(x)e"* converge pointwise to f(x)e™*
and are dominated by the integrable function f. O

Definition 15.3. Similarly if i is a finite Borel measure on R* and u € R? we set

i = [ e dufa),
Rd

We call it the characteristic function of .
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Again |fi(u)| < p(R?) and u — fi(u) is continuous for the same reasons.

Example: Let © = N(0,1) be a normalized (i.e. mean 0, standard deviation 1)
gaussian measure, so that du(xz) = g(z)dz, where

.T2

1
g(x) := Eexp( 5 ).
Claim: g(u) = fi(u) = exp(—“;) =/27g(u).

~ up =2 AT
g(u) = J. ereT 2 .
R V2
Differentiating (under the integral sign, which is legitimate by Corollary 7.15) with
respect to v and integrating by parts, we obtain:

d ; d
@@(u) = Jixew“’e*ﬁ/z—;ﬂ

=— Jieng’(x)da:

- 1wz

- _uJei“xg(:c)dx = —ug(u)

Proof. We can write

SO
=N u? d . w2 ~ u?
@(9(“)6 %) = (%9)6 2+ uge ? =0,

which implies that

But

SO

d

This shows that the gaussian is self-dual, namely it is equal to its Fourier trans-
form up to a scaling factor: § = 4/2mg. It can be shown that this property charac-
terizes the gaussian distribution among all Borel probability measures on R.

Example: If y = N(0, I) is an isotropic multivariate gaussian (here I is the d x d
identity matrix, we will explain the rationale for this notation in a few lectures), in
other words:

dp = g(x1) - ...  g(xg)dxy ... deg = G(z)dz,
where

G(z) = ml)(iﬂeXp(;(ﬁ +. 4 22). (15.1)

Then
d
) . 1
G(u) = J G(x)el<"’x>dm1 co.dxg = | | f g(x)e™®idr; = exp(—=|u]?)
Rd 17 JR 2

where |ul? = u? + ... + u?.
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Lecture 18

Theorem 15.4 (Fourier Inversion Formula). (1) If u if a finite Borel measure
on R? such that i € LY(R?), then p has a continuous density ¢(z) with
respect to Lebesgue measure, i.e. du = ¢(x)dx, and

1 =
@) = (=)

(2) If f € LY(RY) is such that f € L'(RY), then

for Lebesgue almost every x.

Note that x — (2;){1 f (—x) is a continuous function, being the Fourier transform

of an L' function.

Interpretation: this theorem says that the function f can be decomposed as
a weighted sum, or integral, of “Fourier modes”, i.e. the oscillatory functions
T — ei(u,z>7

iy —i{u,x du
f(x) = Rdf(u)e < ’>W

and the “weights” f(u) are called the Fourier coefficients of f. The functions
Xu() 1= e are called modes in physics and characters in mathematics. Their

defining property is that they are group homomorphisms from (R, +) to the circle
group {z € C, |z| = 1}, namely x.(z + y) = xu(7)xu(y) for all z,y € R%.

Proof. (1) Without loss of generality, we may assume that p is a probability measure
(replace g by p/u(R?)). And that u is the law of some random variable X on a
probability space (2, F,P). The main idea of the proof is to use gaussians to
“mollify” X (that is replace X by the “smoother” distribution X + oN for an
independent gaussian N and let o tend to 0) and exploit the self-duality property of
the gaussian distribution. To achieve this, let IV be an independent random variable
on (9, F,P), which is assumed to be a normalized standard gaussian N (0, I;) with
density G(x) (defined in the Example above)
We need to show that for every A is a bounded Borel subsets of R, we have:

P(XeA) = Ld 1a(2)p(z)dz.

Let h:=14 and o > 0. By the Dominated Convergence Theorem we have:
lin% E(h(X + oN)) = E(h(X)). (15.2)

On the other hand:

du
om)i2 dx)

E(h(X +oN)) — E( f h(X +02)G(z)dz) — E( f f h(X +02)G(u)e i)
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because G(z) = SRd _K“ ) @ )d/z as follows from the computation in the

above Example. Then settmg z =X+ oz we get

(X + oN)) = ] j j h<z>a<u>ef<z’zx>@;j_;;wd4

We have used Fubini to interchange E and { { at the second line. This was legit-
imate because h(2)G(u)e~7*=X) is an integrable (w.r.t. dz ® du ® dP) function.
Now the integrand is dominated, because

()G om)e™ ) 1) € g ()

which is integrable by assumption. So we may apply the Dominated Convergence
Theorem: letting o — 0 and noting that G(0) = 1/(27)%2, we conclude that:

du P~ dz
Wdz = Jh(z)ux(—z) Lk

lim E(h(X + oN)) = th(z)e_i<u’z>ﬁ}(u)
Comparing this to (15.2) ends the proof.

(2) The proof of part (2) is entirely similar: write f = f* — f~ and f(z)dz =
adpx(x) — bdpy (x) for some a,b > 0 and some independent R?-valued random
variables X, Y. So that adux = f*(z)dz and bduy (x) = f~(z)dz. One needs to

show that Lo-
f W) f(2)dz Jh(z)wf(—z)dz

for every bounded measurable h > 0. Perform the same proof as in (1) writing

| 1)1z = aB () ~ VECRY)),
then replacing X by X + oN and Y by Y + N, and compute
lirr%) aE(h(X + oN)) — bE(h(Y + oN))

in two ways. At the end, when applying the Dominated Convergence theorem, use
the integrability of f = ajix — bty in place of that of ix (note that there is no
reason for the latter to be integrable). (]

fA{emark 15.5. We see from the above theorem the importance of the assumption
f e L'. How can one ensure that this is the case in practice? Well, it is enough that
f has enough integrable derivatives. In the case of univariate functions a simple
sufficient condition for this is to require that f be C? and f,f’ and f” be integrable
(i.e. in L*(R), we suppose here that we are over R, but a similar condition can be
given over R?). To see this, note that if f is C' and f’ € L, then f(u) = £ f/(u).
Indeed, integrating by parts, we have:

d 1 / uxT
W = [ f@yerds = o [ f@) 5@ =~ [ Flajeda,
It follows that )
1F )] < =|f]ls-

Jul
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Iterating this fact, we conlude that is f,f’ and f” are in L', then f(u) = fiﬁ(u),
to

~ 1
el < 161
and hence f € L'(R).
We now pass to an important operation one can make on functions or measures:

Definition 15.6 (Convolution product). Given two Borel measures on R%, say u
and v, we may define their convolution i * v as the image of the product measure
p @ v under the addition law on (R, +), namely:

prv = Du(u®v)
where
®:R% x R? - R?
(z,y) >z +y

Example: If 4 = pux and v = py are the laws of two independent R%-valued random
variables X and Y, then p * v is the law of the random variable X + Y, indeed:

P(X+Y eA) = pux®puy(® '(A)).
Definition 15.7. Similarly, if f and g are in L' (R?), we may define

frglx):=| flz—1t)g(t)dt.

R4

This is well-defined for (Lebesgue) almost every x, because the map

(z, 1) = f(z —1)g(t)
belongs to L(R? x R?), since

| [17te = tgto)ideas = 1112191y < o0

Therefore, by Fubini, f = g(x) is well-defined and is finite for m-almost every .
Also

If + gl = [ 17 * ga)ldz < |fhlghs.
One says that L'(R?) endowed with the convolution product * is a Banach algebra.

Remark 15.8. If y, v have densities with respect to Lebesgue, that is p = fdx
and v = gdz for some integrable densities f and g, then p = v also has a density
with respect to Lebesgue equal to f = g.

Proposition 15.9 (Gaussian approximation). If f € LP(R?) and p € [1, +), then
tim [ + G — f1, = 0,

where Gy (x) = m exp(—%) is the density of a gaussian distribution N'(0,0%1).

To prove this, we need a lemma:

Lemma 15.10 (Continuity of translation in LP). Let f € LP(R?) and p € [1, +0),
then

tim [ (f) ~ fl,, = 0.
where 7,(f)(x) = f(z + t) is the “translation” by t € RY.

Proof. This is an exercise in the 4th Example sheet. Use the density of C.(R?) in
L? (which itself follows from Ex. 13 in the 3rd Example sheet). O
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Proof of Proposition 15.9. We can write
£4Gale) = £(0) = [ Go ) (o~ 1)~ f(@)dt = E(f(z ~ oN)  f()

where N is a normalized gaussian N'(0,1). Hence by Jensen’s inequality (given that
x — P is convex)

|f # Go(z) = f(2)]” SE(f(z —oN) = f(2)["),
and hence
If % Go = [l <E(l7-on(f) = flp)-
By the lemma above we know that almost surely ||[7_,n(f) — f|l, tends to 0 as
o — 0. So by Dominated Convergence (licit because |T_on (f) — flp < 2[|f]lp) we
get the desired conclusion. O
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Lecture 19

Proposition 15.11. (a) if u, v are Borel probability measures on RY, then i+ v =
fi*D.

(b) if f,g € L'(R?), then [+ g = f§.

Proof. For (a) wlog we may assume that u = pux and v = py are the laws of two
independent random variables. By definition, the law of X +Y is precisely px * py .
But by independence of X and Y,

E(eiu(X+Y)) _ E(eiuX)E<eiuY)

hence fix 1y (u) = fix(u)y (u) as desired. (b) reduces to (a) writing f = ft — f~,
adp = fT(x)dx and bdv = f~(x)dx (where a,b > 0 are so that u and v are
probability measures), doing the same for g and expanding the product. O

The Fourier transform yields a very handy criterion to check convergence in law
of a sequence of random variables: it is equivalent to pointwise convergence of the
Fourier transforms, namely:

Theorem 15.12 (Lévy’s criterion). Let (X,)n>1 and X be an R*-valued random
variable. The following are equivalent:

(i) X, » X in law,

(ii) for all w e R, lim,, , o fix, (u) = jix (u)
In particular, if ix = fiy for two random variables X and Y, then they coincide
in low, i.e. ux = py -
Proof. (i) = (ii) is by definition, because for each u, x — €% is continuous and
bounded. For the other direction, we need to show that for every continuous and
bounded function g on R% we have:

E(9(Xn)) =norw E(g(X)).

By Ex. 3 in the 4th Example sheet, it is enough to prove this for every smooth and
compactly supported function g on R?. But then both g and g are in L*(RY) (see
Ex 6 in the 4th Example Sheet). So by Fourier inversion we get:

ola) = [ S

and thus

E(g(X,)) = j @(u)@(—u)é’;.

Now we can conclude by Dominated Convergence, since |fix, (—u)| < 1,

lim E(g(X,)) = Jg(u)ﬁ)\((_“) (Qd:)d'

n—s

O

Example: Show that the N'(m, 02) converges weakly to the Dirac mass 6,, as o — 0.
[Wlog we may assume that m = 0. Then by Lévy’s criterion, this boils down to
showing that fix. (u) — jix(u) for every u € R, where X, is distributed according
to N'(0,0%) and X = 0 a.s. This is immediate, because jix, (u) = exp(—c?u?/2). ]
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Remark 15.13 (Bochner’s theorem). The characteristic function jx of a random
variable X is a continuous function equal to 1 at 0. It is easy to verify (exercise)
that it is a positive definite function, namely that given any uy,...,uy € R% and
scalars t1,...,ty in C we have:

N
D tatjiix (ui — uy)
1=1

is real and > 0. Solomon Bochner proved in the 1930’s that this property char-
acterizes the Fourier transform of Borel probability measures among all (complex
valued) continuous functions of R? equal to 1 at the origin.

The inversion formula given previously works under the assumptions that both
f and its Fourier transform f are integrable. It turns out that when f is square
integrable (i.e. in L?), then one can make sense both of the Fourier transform and

of the inversion formula even though neither f nor f may be in L!. To do this we
exploit the Hilbert space structure of L? and the following is the main result:

Theorem 15.14 (Plancherel formula). (a) Let f € LY(RY) A L2(R?). Then f €
L2(R%) and

1712 = @) £
(b) if f,g € LY(RY) n L2(R?), then we have the so-called Plancherel formula:
<fA, §>L2(Rd) = (27T)d<fa §>L2(Rd)~
(c) The map
F:LYR?%) n L%R?) — L?(R%)

1 -~
I Gyt

—~
[\

extends uniquely to a linear isometry of L?(R?). Moreover F o F(f)(z) =
f(=x).

A “linear isometry” means that |Ff|s = |f|2 for every f e L2(R%). It is that
extension to all of L2(R%) that we continue to call the Fourier transform, and the

relation F o F(f)(xz) = f(—=) can be seen as the extension of the Fourier inversion
formula to all of L2(R9).

Proof. First we prove (a) and (b). Assume to begin with that f and g belong to
L' n L2. Compute:

F.9 = [ Fgidn = | [ e 5adsd
ff o(—)dz = (2) f F(@)g@)dz = (27)f, g

where we have used the Fourier inversion formula in the second line. It was legiti-
mate to swap the two integrals at the first line, because f and g are integrable, so
Fubini applies.

To handle the general case, we let ¢ > 0 and consider the convolution products
fr = f* Gy and g, := g * G,, where G, is the density of a gaussian N'(0,021y).
In other words G,(z) = 27 G(%), where G is the density of the standard gaussian
defined in (15.1). By Proposition 15.11, we may compute:

G, =[G, = [exp(—alul?/2)
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Clearly f, belongs to L! n L? (note that HfHOO < |fl1) and so does g,. So by the
above we conclude that for every ¢ > 0

17513 = @m)? £ ]2

But now by gaussian approximation (i.e. Lemma 15.9) we get:
lim [ fo]2 = [ f2
o—0

and
1713 = 1fGo13 = fIf(U)IzeXp(*UHUHQ/@du

converges to HfH% as 0 — 0 by Monotone Convergence. We conclude that || 7l |2 =

@m) ] £13-

Now similarly
Fosoy = | Fgtaie 1 )du

converges Sf(u)@(u)du by Dominated Convergence (licit because f? is integrable,
given that J? and g
(b).

We now turn to (c). The subspace L*(R?) n L?(R?) is dense in L2(R?). Indeed
it contains the continuous and compactly supported functions C.(RY), which is
already dense. So we can define F f in general as

Ff=limFf,

are in L2, cf. Cauchy-Schwarz). This ends the proof of (a) and

where f, € L' nL? and f, — f in L2. This is well-defined, because on the one
hand

H]:fn - -FmeQ = an - meQ

as follows from the Plancherel formula (part (a) of the proposition), which implies
that Ff, is a Cauchy sequence, hence converges in L2. And on the other hand the
limit does not depend on the choice of sequence (fy,)n, because if (f},), is another
such, then

H]:fn _‘Ff’I/LH2 = an - fr/zH2
so Ff} and Ff, have the same limit. In the limit we get: |Ff|2 = ||f]l2-
Finally, from the Fourier Inversion Formula, we have

FoFf=f", (15.3)

where f¥(z) = f(—z) for every f € L with f € L!. But such functions are dense in
L? (they contain all of C%(R%) the smooth compactly supported functions). Hence
(15.3) holds for all fucntions f e L2(R%). O

Remark 15.15 (smoothness/decay barter). An important metamathematical fact
to remember about the Fourier transform is that it exchanges smoothness for decay
at infinity and vice versa. For example a very smooth (i.e. with many continuous
derivatives) integrable function will have a Fourier transform that decays fast (poly-
nomially with a degree that depends on the number of continuous derivatives) at
infinity. Conversely if a function decays fast at infinity (e.g. is compactly sup-
ported), then its Fourier transform will be very smooth. The intuition behind this
is as follows. The characters x — €' are oscillatory functions that oscillate with
frequency proportional to 1/u. So if the decomposition of f as

f@) = [ Flae au
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has not too small Fourier coefficients f(u) even for large values of u, then it means
that the high frequencies occur a lot in the decomposition of f. And consequently
f is not very smooth.

Remark 15.16 (uncertainty principle). Further to this, it can be shown that it
is impossible, unless f is identically zero, for f and its Fourier transform f to be
both compactly supported (f would be analytic and vanish on an open set, hence
would be identically zero). There even is a (mathematical) uncertainty principle
according to which if X is a random variable whose law has density | f(z)|? € L'(R),
and Y is another random variable whose law has density |f(z)[2/(27) € L!(R), then

VarX - VarY > 1/(1672),
which can be interpreted as saying that X and Y cannot be both too localized.

Remark 15.17 (Schwartz space). An interesting subspace of L?(R?) is the space
of smooth (i.e. C®) functions all of whose derivatives decay fast at infinity (i.e.
faster that any polynomial). This is called the Schwartz space. And it can be shown
that the Fourier transform F preserves the Schwartz space. See the Example sheet.
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Lecture 20

16. GAUSSIAN RANDOM VARIABLES

We now come back to probability theory, introduce gaussian random variables
and their co-variance matrix, and then state and prove the Central Limit Theorem.

Definition 16.1. An R%-valued random variable X is called gaussian if for every
u € R? the inner product

Xyuy :=u X1+ ... +uqXq
is a real valued gaussian random variable, i.e. has law N'(m,o?) for some m € R

and some o = 0. Recall the gaussian law N'(m,o?) is the Borel probability measure
on R whose density with respect to Lebesgue measure is given by
(x —m)*

1
/;27_(_0_2 exp(f 20_2 )

if 0 > 0 and when o = 0 we take it to mean 6,,, the Dirac mass at m.

Example: if Ny, ..., Ny are d independent normalized gaussians (distributed accord-
ing to N(0,1)), then (Ny,...,Ny) is a gaussian vector, because all linear combina-
tion a1 N1 + ... + agNg are gaussian (with mean zero and variance Zj a?, indeed
it has the right characteristic function:

E(exp(iu(z a;N. HE (exp(iucy N. Hexp 2/2 = exp(— Ea u?/2).
J

Re-valued gaussian random variables are also called gaussian vectors. Their law
is entirely characterized by their mean and their co-variance matrix:

Proposition 16.2. The law of a gaussian vector is determined by

(1) its mean: X := (E(X1),...,E(Xy)), and

(2) its covariance matriz: (Cov(X;, X;)1<i,j<d
We often denote it by N'(m, K), where m € R? is the mean, and K € My(R) is the
covariance matriz.

The entries of the covariance matrix are the correlation coefficients between the

coordinates of X, namely: Cov(X;, X;) = E[(X; — E(X;))(X; — E(X;))].

Proof. Let jix(u) := E(eX) be the characteristic function of X. Clearly this is
entirely determined by the family of laws yx ., for u ranging in RY (this fact holds
for any random vector X). But as X is gaussian, we know that (X, u) is a real
valued gaussian random variable. And the law of a real valued gaussian random
variable is determined by its mean m and its variance 0. So the law of (X, u) is
determined by E((X,u)) = (X, u) and by

Var((X,u)) = E(X = X,u)’) = ). wu;Cov(X;, X;). (16.1)
1<i,5<d
[l

Remark 16.3. Note that (16.1) shows that the covariance matrix of any random
vector is positive semi-definite symmetric matrix.

The next proposition gives a way to construct an arbitrary gaussian vector out
of d independent normalized real valued gaussians. It also shows that the image of
a gaussian vector under an affine transformation of R? is again a gaussian vector.
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Proposition 16.4. Let Ny,...,Ng be d independent normalized gaussians each
distributed as N'(0,1). We write N = (Ni,...,Ny). Let A€ My(R) a square d x d
matriz and b € R%. Then

AN+

s a gaussian vector with mean b and covariance matriz AA¥. Moreover, given a
—
gaussian vector X in R?, there is a vector b € R% and a matriz A such that X and
—
AN + b have the same law.

Proof. Note first that AN + 7 is a gaussian vector, because for every u € R?,
—
{u, AN+ Y is a linear combination of N;’s and a constant vector, so it is gaussian
— —
by the Example above. Clearly E(Aﬁ + b) = b. Moreover

Cov(AN + b)) = Cov(AN) = AA*,
because by (16.1)
(u, Cov(AN)u) = Var((AN,u)) = Var((N, A*u))
= Z(A*u)f — | A*u|? = (A*u, A*u) = (u, AA*u)

Finally if X is a gaussian vector, then set b = E(X) and pick A so that Cov(X) =
AA*. Then AN + b will have the same law as X , because it has same mean and
same covariance matrix. O

Remark 16.5. If X = (Ny,..., Ng), then the covariance matrix of X is the identity
matrix Ig. And the law of X is invariant under rotations. Indeed if O € O4(R)
is a rotation centered at the origin, then OX is again a gaussian vector, with
identity covariance matrix. It can be shown that the only Borel probability laws
on R? invariant under rotation and with independent coordinates are gaussian laws
N(0,\I;) for A = 0. This provides a further interesting way in which the gaussian
distribution arises naturally (see the 2019 exam...); for yet another see Exercise 17
in the 4th Example Sheet.

Remark 16.6. If det(A) # 0, then X = AN+ isa non-degenerate gaussian:
its law has a density with respect to Lebesgue measure on R?. Its density can be
easily computed and equals:
1 (
Sy
@m) 72 det(A)]

and note that [A= (z — B)|2 =(K~Yz—b),(x— b)), where K := Cov(X).

S4B,

The following characterizes gaussian vectors with independent coordinates:

Proposition 16.7. Let X = (X1,...,Xy) be a gaussian vector. The following are
equivalent:

(a) the X;’s are independent random variables,

(b) the X;’s are pairwise independent,

(c) the covariance matriz Cov(X;, X;) is a diagonal matriz.

Proof. (a) implies (b) implies (c) are all clear. By Proposition 16.4 X has the
same law as some AN + b, where b = E(X) and A is any matrix such that
Cov(X) = AA*. So if (c) holds, then we can choose A diagonal. This now clearly
implies (a). O

We are now ready to state and prove one of the corner stones of probability
theory, namely the Central Limit Theorem.
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Theorem 16.8 (Central Limit Theorem). Let (X,)n>1 be independent and iden-
tically distributed R%-valued random variables with common law p. Assume that
| X1|? is integrable (we say that p has a finite moment of order 2). Then

1
converges in law towards a gaussian distribution on R with mean 0 and same
covariance matriz as X1, namely K, := Cov(X;).

This means that a sum of n independent R%valued random variables with com-
mon law  tends to concentrate around the mean n {5, zdju(x) with fluctuations of
order 4/n, and the fluctuations are random and distributed according to a gauss-
ian law determined by the covariance matrix of pu. The fact that the gaussian law
arises this way and depends on p in such a mild way (only via the covariance) is
remarkable.

A historical aside: The phenomenon was discovered by de Moivre in the early
18th century and discussed in his book “The Doctrine of Chances” in which he
applied the recently discovered Stirling formula on the asymptotics of n! to derive
the theorem in the special case of binomial random variables (i.e. X, is 1 or 0
with probability p and 1 — p respectively), see the 3rd Example sheet. The theo-
rem was extended in the present form (perhaps assuming the X;’s were bounded)
by Laplace later on, and then by Lyapunov to non uniformly distributed random
variables (but this requires a further assumption on the growth of the variances).
Throughout the 19th century the result was known as the “Law of errors”. The
term Central Limit Theorem was coined (in German: “Zentraler Grezwertsatz der
Wahrscheinlichkeitsrechnung”) by Pdélya in the 20th century.

Proof. We give the usual proof via Fourier transform and characteristic functions.
By Lévy’s criterion, to show that Y,, — Y in law we need to prove pointwise
convergence of characteristic functions fy, (u) — jiy (u), for each u € R? Since
Ay (tu) = [igy,qy(t), this is equivalent to showing that (Y,,u) converges in law
towards (Y, u) for each u. So without loss of generality, we may assume that d = 1.

Then again wlog (changing X; into (X; — E(X;))/4/ Var(X;), we may assume
that E(X;) = 0 and E(X?) = 1. Then we write:

lTY\n(U) _ E(eiuYn) _ ile(e(iuf%)) _ [ﬁ(%)]n

wX1), But X is square integrable, so we may differentiate twice

where [i(u) := E(e
under the integral sign:

d? 9
Taai) = [~z du(a),

which is a continuous function of u. Hence fi(u) is of class C?, and we may write
its Taylor expansion near u = 0 as follows:

fi(u) = fi(0) + ufi’(0) + %ﬂ”(O) + o(u?).

But note that
7(0) = i [ zdue) = i€ = 0

and

A(0) = — j 2du(r) = 1
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Hence 9

plu)=1-— 5 + o(u?).

Hence for each u € R, as n tends to +o0,
u2 u2 u2 u2 u2
o(—N" = (1 = — — )N\ = - — no_, — ).
(A=) = (1= o+ o(“2))" = fexp(— 5+ o(“-))]" — exp(— %)

\n 2n
Finally we get:
E(c™™) — ™% = §(u)
where g(x) = \/#276_752/2 is the density of the standard gaussian A/(0,1). This

concludes the proof.
O

Remark 16.9. A comment on proofs of the CLT. This is the slickest proof of
the Central Limit Theorem. There are other proofs. We’ve already mentioned
the original proof by de Moivre via Stirling’s formula (see the 3rd Example sheet).
But this seems to work only for finitely supported laws p. For bounded random
variables, one can use the method of moments (i.e. prove that all moments converge
to the respective moment of a gaussian law); this works but it is messier than the
proof via charateristic functions we have just given. Another approach is due to
Lindenberg and consists in replacing each increment X; by a gaussian one at a
time and controlling the error terms (see Feller’s book for Lindeberg’s method).
This leads to a generalized result, where the random variables are allowed to have
different laws. Yet another approach it to use entropy: the gaussian maximizes the
entropy among all laws with given variance. The great Soviet mathematician Linnik
showed how to exploit this to give another proof of the Central Limit Theorem.
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Lecture 21

17. INTRODUCTION TO ERGODIC THEORY

In the last three lectures we give a very brief introduction to ergodic theory.
This is a vast subject and we will only go as far as proving the Von Neumann Mean
ergodic theorem as an application of the Hilbert space techniques developed earlier
in the course and derive from it the (stronger) Birkhoff pointwise ergodic theorem.
Given time constraints we will have to skip over several basic facts and important
motivational examples. For a thorough and modern introduction accessible at this
level we recommend the first few chapters of Einsiedler and Ward “Ergodic Theory”
(Springer GTM).

Ergodic theory is the study of statistical properties of dynamical systems. In
dynamics one studies iterations 7" = To...oT of a self map T : X — X of
a space X and one is interested in the behavior of orbits {T"x},>0. Is the orbit
dense? does it accumulate onto some attractor? does it come back close to where
it started? if so at what time and how often? etc. Ergodic theory is the study of
these questions from a statistical point of view, where one assumes that the space
X comes equipped with a T-invariant measure . The questions then become: does
the orbit {T"x},>0 become equidistributed w.r.t to some measure, i.e. does the
sequence of measures

1 n—1
= bria
nizo

on X converge weakly to some measure on X7 What is the behaviour of a typical
orbit, i.e. of {T"x},>0 for p-almost every x? Are there more than one T-invariant
measure on X, can one classify them? etc.

We begin by introducing some standard terminology. Let (X, A, 1) be a measure
space. We will assume throughout that p(X) is finite.

Definition 17.1 (measure preserving map). A measurable map T : X — X is
called measure preserving if

Tipp = p,
where Ty denotes the image measure. In other words: u(T=*A) = u(A) for all

A e A. A measure space (X, A, ) together with a measure preserving map T is
often called a measure preserving system.

Definition 17.2 (Invariant function and invariant o-algebra). (1) A measur-
able function f: X — R is called T-invariant if f = foT.
(2) A measurable subset A € A is called T-invariant if T"1A = A,
(3) T :={Ae AT 1A = A} is a o-subalgebra of A called the invariant o-
algebra.

Lemma 17.3. For a measurable function f: X — R, TFAE:
(i) [ is T-invariant,
(i) f is measurable with respect to T
Proof. For t € R we have:
T '{ze X, f(z)<t}) ={re X, foT(z) <t}

So if f is T-invariant this is also equal to {z € X, f(z) < t}, so that (i) implies
(ii). For the converse, note that if f is Z-measurable, then {z € X, f(z) < t} is in
T for all t, and thus equals {x € X, f o T'(z) < t}. Hence f and f oT have the same
sublevel sets. But this clearly implies that f = foT. (]
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Definition 17.4 (ergodic transformation). Given a measure space (X, A, 1) and a
measure preserving map T : X — X, we say that T is ergodic with respect to p (or
equivalently that p is ergodic with respect to T') if for all A € T either u(A) =0 or
n(A°) = 0.

In other words a measure preserving system is ergodic if it cannot be written as
the disjoint union of two non-trivial subsystems (i.e. invariant measurable subsets
of positive measure). So it is a kind of irreducibility condition, and indeed one
can often reduce the understanding of a measure preserving system to ergodic
subsystems.

Exercise/Example: Let X be a finite set and T : X — X a self map. Take A the
discrete Boolean algebra (i.e. all subsets of X) and u the counting measure. Then

(1) T is measure preserving if and only if T is a bijection,
(2) T is ergodic if and only if for every z,y € X, there is an integer n > 0 such
that T"z = y.

Lemma 17.5. Let (X, A, u, T) be a measure preserving system. Then T is ergodic
with respect to p if and only if for every T-measurable map f there is a € R such
that f(x) = a for p-almost every x € X.

Proof. This is Exercise 11 in the 4th Example Sheet. (]

We now study two important examples:
Example 1: (circle rotation) Let X = R/Z be the circle. Let A be the Borel o-
algebra and m Lebesgue measure (rather Lebegue measure on [0, 1) identified nat-
urally with R/Z). Fix a € R and consider the self-map
T:X - X,

T — T+ a.

Then T is measure preserving. We have:
Proposition 17.6. T is ergodic w.r.t m if and only if a is irrational.

Note that this is also equivalent to asking that there is a dense orbit (or that all
orbits are dense).

Proof. The proof uses the Fourier transform. Let f = 14, where A € Z. We
compute the Fourier coefficients:

f(n) = J 2™ f(g)dx = J- 2™ T@) f o T (x)da
R/Z R/Z

_ f e2i7rnae2iﬂ'nwf(x + a)d:c _ J e2i7rnae2i7rnzf(m)dx _ e2i7rnaf(n)
R/Z R/Z

where we have first used the fact that m = du is T-invariant, and then that foT" = f.
If @ is irrational, then €2™™® % 1 when n # 0 so we must conclude that f(n) = 0 if
n # 0. But a function on R/Z all of whose Fourier coefficients are zero except when
n = 0 is almost everywhere constant (to see this apply Parseval’s formula). On the

other hand if a is rational, say a = %, then T is not ergodic, because, for instance

the union of intervals of the form [g, % + 2—1(]) for k =0,...,q— 1 is invariant under

T and has measure %

O
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Example 2: (times 2 map on the circle) Again let X = R/Z with Lebesgue measure
m, but this time, we consider the map

T: X — X,

x— 2x mod Z.

Note that 75 is a measure preserving map (even though it dilates by a factor 2).
Indeed, the preimage of a small interval of size s is made of two intervals of size
s/2.

Proposition 17.7. 15 s ergodic.

Proof. Let f = 14, where A € Z. Once again we can compute its Fourier coeffi-
cients:

fln) = f 2™ f(g)dx = f 2™ T2(@) £ o Ty () da
R/Z R/Z

= J e f (1) dx = ]?(Qn)
R/Z

where we have first used the fact that m = dx is Ty-invariant, and then that
foTs = f. Iterating this relation we see that

f2Fn) = f(n) (17.1)

for all n € Z and all k > 1. However f € L?(X,dz), so Parseval’s identity reads:

ATL 2: X 2 T = m .
3 o L/Zu( )di = m(A)

This is finite, so by (17.1) we must have f(n) = 0 for all n % 0. Hence f is almost
everywhere constant. In other words either m(A) = 0, or m(A°) = 0, which means
that T5 is ergodic.

O

Remark 17.8. The Lebesgue measure is not the only 7Ts-invariant and ergodic
Borel probability measure on R/Z. For example the Dirac mass dy is invariant and
S0 18 %((51 /3 +02/3). But there are non-atomic invariant measures too. For example
we may consider the random variable X :=», _, &=, modulo Z, where (¢,)n>1 is a
sequence of i.i.d. random variables such that P(e,, =0) =p and P(e, =1)=1—p
for some p € (0,1). Then 2X mod Z has the same law as X mod Z. Thus this
law is therefore invariant under 7T5. And it is not Lebesgue if p # % and has no
atoms. A famous conjecture of Furstenberg (still open!) asserts that the only Borel
probability measure on R/Z with no atoms that is invariant under both 75 and T3

is Lebesgue.

18. CANONICAL MODEL FOR STOCHASTIC PROCESSES

In this section, starting with an arbitrary sequence of random variables, we are
going to associate dynamical system T : X — X, where X will be the space of all
sequences. Then we investigate invariant measures on this system.

Let (X,)n>1 be a sequence of R%-valued random variables on a probability space
(Q, F,P). We define

®:Q— (RHYN
w = (Xn(W))nz1

be the sample path map, it assigns to the outcome w € Q the full sequence, or
sample path, (X, (w))n.
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Now on the space of sequences X := (RY)N| we may define the shift map
T:RHYN - RHN
(xn)nBI = (anrl)nZl-

The space of sequences X := (R%)N is also called the shift space. On it we can
define the coordinate functions:

Zn: X > RY
(zn)nzl = Tn.

We endow X with a o-algebra A, which is called the product o-algebra, and is
defined as the smallest o-algebra that makes all coordinate functions measurable.
In other words A = o(z,,n = 1).

It is also the o-algebra generated by the Boolean algebra of cylinder sets. A
cylinder set is a subset of X of the form 77}1(/1), F < N is a finite set of indices, A
is a Borel set in (RY)Fl, and 7z : X — (RY)!Fl is the projection to the coordinates
i1y ey, if F = {in, ... ik}

The image measure p := ®.P is a probability measure on (X,.A) and is called
the law of the stochastic process (X, )n>1-

The dynamical system (X, A, u,T) is called the canonical model associated to

(Xn)n.

Proposition-Definition 18.1. Let (X,,),>1 be a stochastic process and (X, A, u, T')
its canonical model. Then the following are equivalent:

(1) (X, A, u,T) is measure preserving,
(2) for all k =1, the joint law of (Xn, Xnt1,---, Xntk) is independent of n.

In this case, the process is called stationary.

Proof. Note that p is the law of (X;);>1, while T2 is the law of (X;45)i>1. So
if 4 = Ty p, then for all n, p = Ty and the two laws coincide. Conversely if the
laws coincide on cylinders, they must be equal on all of A by Dynkin’s lemma (the
cylinders form a m-system that generates). O

A special class of stationary processes are the so-called Bernoulli shifts:

Proposition-Definition 18.2. If (X,,),>1 is an i.i.d. process, then it is stationary
and the canonical model (X, A, p, T') is ergodic. In this case we say that the measure
preserving system (X, A, u, T) is a Bernoulli shift, and u = v®N, where v is the law
Of X1 .

Proof. This is an application of Kolmogorov’s 0-1 law. Clearly the process is sta-
tionary, so p is T-invariant. We have to show that it is ergodic. So let Z be the
invariant o-algebra. Note that ®~!7 is contained in the tail o-algebra T of the
process, namely 7 = (), 0(Xx, Xj41,...). Indeed, if A€ Z, then A=T"1A and

71 (A) = {w e Q (Xn(w))nz1 € 4}
={weQ (Xp(W)nz1 €T A} = {we Q, (X1 (w))n=1 € A}
= {UJ € Q7 (Xn+k(CU))n21 € A} C O'(Xk+1,Xk+2, . )

for all k> 1. This means that ®~1(A4) e 7.
But the (X,,),’s are i.i.d., so Kolmogorov’s 0-1 law implies that 7 is trivial, and
hence p(A) € {0,1}. So T is ergodic. O

Remark 18.3. Sometimes authors reserve the term Bernoulli shift (or Bernoulli
scheme) to the case when v is finitely supported on a finite abstract set (i.e. not
necessarily part of RY).
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Lecture 22

19. THE MEAN ERGODIC THEOREM
Let (X, A, u,T) be a probability measure preserving system.
Theorem 19.1 (Mean ergodic theorem in L?). Let f € L2(X, A, ). We set

n—1
Suf) =+ 3 for"
0

Then there is a T-invariant function f (in fact f = E(f|T) the conditional expec-
tation, where T is the o-algebra of T-invariant subsets) such that

lim S,(f)=f

n—+a
where the convergence takes place in L?(X, A, i1).
Remark: If H is a Hilbert space and A : H — H is a bounded linear map, then

we may define its adjoint A*, which is the linear map y — A*y defined to be the
unique vector (as given by the Riesz representation theorem) such that

(Az,y) = (x, A%y).

Observe that the operation A — A* is involutive, i.e. A** = A. Moreover the
operator norm of A and A* coincide, because

[ A%yl = sup Kz, A%yl = Sup [CAz, )| < | A] - [yl
which gives | A*|| < |A| and hence |A*|| = | A|| by symmetry (one can further prove
that | AA*| = [A]?).

Proof of the mean ergodic theorem. We give the original proof, due to von Neu-
mann (1932). It is based on a simple Hilbert space argument. We consider the
Hilbert space H := L?(X, A, u). Let
U:H->H
f—ofoTl.
It is clear that U is a linear operator on ‘H, which is bounded and in fact an isometry,
that is:
O£l =171

for every f € H. This is clear, because by assumption pu is T-invariant, so
A = [ 17 0TPdu= [ I = 1112
X X

Let W := {¢ — U¢p,¢ € H}. This is a subspace of H (called the subspace of
co-boundaries).
(a) If f e W, then
1 n—1 . ] 1
Snf=— D (0T —¢oT™H) = —(p—¢oT")
0

obviously tends to 0 in H as n — +c0.
(b) if f € W (the closure of W in H), then we again have S, f — 0, because for
every € > 0 we can find g € W with || f — g| < e, and so:

1 & . ,
[Snf = Sngl < =3 Nf 0T —goT'| < |f — gl <e
1
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which implies that limsup |S,, f| < €, and hence that limsup ||.S,, f| = 0 since € was
arbitrary.
(¢) By the orthogonal decomposition for closed subspaces of Hilbert space we
have:
H=Waewt

and W = (W+)L. Since S,f — 0 if f € W, without loss of generality we may
assume that f € W+. But we now observe the following:

{geH,g=Uglc W ={geH, (9,6 —U¢) =0Yp e H} ={geH,{(g.¢) =U*g, ) Vo € H}
= {geHag: U*g}C {gGH,g: Ug}7

which is exactly the subspace of T-invariant functions in H. To justify the last
containment in the above formula, note that

lg—Ugl* = lg|* + |Ug|* — 2Relg, Ug) = 2|g|* — 2ReU*g, 9,

which is clearly 0 if g = U*g.

Soif g€ W, then g = go T and S,,g = ¢ for all n. Hence the theorem holds
with f = the orthogonal projection of f onto the closed subspace W+ of T-invariant
functions. O

The mean ergodic theorem gives convergence of ergodic averages in L2. It is
easy to derive from it convergence in L for any p € [1,4+00) if we assume that f is
in L? to begin with:

Corollary 19.2 (Mean ergodic theorem in L?). Let p € [1,+m). Let (X, A, u, T
be a probability measure preserving system. Let f € LP(X, A, u) and S,(f) :=
%Zg_l foT? as before. Then there is a T-invariant function f (in fact f = E(f|T),
where T is the o-algebra of T-invariant subsets) such that

i, 5,() = ]
where the convergence takes place in LP (X, A, ).

Proof. We first observe that, as a consequence of the completeness of LP, it is
enough to prove that the result holds for a dense subspace of functions, say W.
Indeed assume that the result holds for every g € W and that W is dense in LP.
Then given f € LP, the sequence of ergodic averages S, f will be a Cauchy sequence,
because for every € > 0 there is g € W such that | f — g|, < € and hence for all n

HSnf - SngH;D < Hf _gHP < €

Therefore when n is large enough |S,, f — g|, < 2e. And for any n, m large enough
|Snf — Smflp < 4e. So (Snf)n is a Cauchy sequence in L? and thus converges to
some limit f. It is clear that f is T-invariant, i.e. foT = f, because

Suf 0T = Suf = (foT" - f)

clearly tends to 0.

To conclude the proof, take W = L*(X, A, ). It is a dense subspace in L? for
all p > 1 (recall that the vector space spanned by simple functions is dense in any
L? p < o0). The von Neumann Mean ergodic theorem applies to any g € W and
gives convergence of ergodic averages S, g towards some T-invariant function g in
L2. Note that g € W as well, because |S,.glls < [|g]oo for all n, 50 ||g]e < |g/lee- To
see that the convergence S, g — g holds in L? as well, note that if p < 2, ||, < |-[|2,
while if p > 2, then | - Hg <13 H€0_2. O
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We will soon prove that ergodic averages actually also converge pointwise assum-
ing only that f belongs to L. This is the content of the pointwise ergodic theorem.
In order to get there, we will first establish a technical result, that goes under the
name of mazimal ergodic theorem.

Theorem 19.3 (Maximal ergodic theorem). Let (X, A, u,T) be a probability mea-
sure preserving system and f € LY(X, A, u). For anyt > 0 we set

E, :={z e X,sup S, f(z) > t}.

Then
1
#(B) < 51/l

The event F; is the set of orbits of T" whose ergodic averages manage to overshoot
t at least once. So the result says that the probability that the ergodic averages
ever become larger than t decays at least as O(1/t), where the implied constant in
O is simply the L'-norm of f.

The maximal ergodic theorem can also be understood as follows: say that f =
14, where A € A is a set of small p-measure. Then the result is a quantified way
of saying that except for a set of starting points x of small measure, for all n the
average time spent in A up to time n is small. More precisely, if u(A) = €2, setting
t = €, we get:

wE) < fli=e

and E. is the set of exceptional starting points = whose orbit up to time n can, for
certain n’s, spend a time larger than en in A.
To prove the maximal ergodic theorem, we will need the:

Lemma 19.4 (the maximal inequality). Let f € L'(X, A, u) and

n—1
fo=nSuf =) foT'
=0

forn > 0. Set also fo = 0. For each N =0 let

Py ={ze X,Oglangfn(x) > 0}.

Then

fdu = 0.
Py

Proof. Set Fy := maxogngn frn. For all n < N we have f,, < Fiv so
fogr=fnoT+ < FnoT+ f.
If € Py, Fn(x) >0, so Fy(z) = maxi<n<n fn(2) < maxogngn fos1(2), so
Fn(z) < FyoT(x) + f(2)
and integrating over Py yields:

f FNd,uSJ FyoTdu + fdp.
Py Py Py

Note that Fiy = 0 on P§ as fo = 0, and Fy > 0 everywhere, so
f Fyndp = J Fndp < f FyoTdu + fdu,
Pn X X Py

which implies that §, fdu >0 by T-invariance of p. O
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Proof of the Maximal ergodic theorem. Simply apply the maximal inequality to g =
f —t and note that

E(f) = | Prlo)

N>1
while S, g = S, f —t. The maximal inequality implies that

Py (g)

or in other words tu(Py(g)) < SPN(Q) fdu < SPN(Q) |flduw < ||f]1. Since Py < Pyy1,
we conclude that
tp(Ey) < | f]s-
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Lecture 23

20. THE POINTWISE ERGODIC THEOREM

In this last lecture, we present the pointwise ergodic theorem. This is an improve-
ment on the mean ergodic theorem asserting that the ergodic averages converge
almost everywhere.

Theorem 20.1 (Pointwise ergodic theorem). Let (X, A, u,T) be a probability mea-
sure preserving system. Let f € LY(X, A, n) and S, (f) := %28_1 foT? as before.
Then there is a T-invariant function f (in fact f = E(f|T), where T is the o-algebra
of T-invariant subsets) such that

lim S,(f)=f

n—+0o0

where the convergence p-almost everywhere. If particular, if the system is ergodic,
then S, (f) converges almost everywhere to the constant § fdu.

When the system is ergodic and f = 14 for some A € A, the theorem says that for
p-almost every starting point x, the time spent inside A by the orbit {T"z}ocn<n
of z between n = 0 and n = N, is roughly u(A)N as N grows to infinity. In other
words, almost every orbit is equidistributed.

Proof. This will follow easily in two steps. First we use the Maximal ergodic theo-
rem to reduce to the case when f is bounded. And in a second step we combine the
Maximal ergodic theorem with the L! mean ergodic theorem to conclude pointwise
convergence in case f is bounded. Note that by considering f — f in place of f, we
may assume that E(f|Z) = 0.

Step 1: reduction to f bounded. Given M > 0, let fas := flj5<as be the
truncation of f at height M. We assume that the result holds for f; for each M.
Let € € (0,1). Let Ej; be the subset of those z € X with |E(fa|Z)(z)| > €. Note
that u(Epy) — 0 as M — +oo, because E(fyr|Z) converges p-a.e. to E(f|Z) = 0.
Note further that for p-almost every z ¢ Ejy, if limsup,, |S,f(z)] > 3¢, then
sup,, |Sn(f — far)(x)| > 2e, because by assumption Sy, far — E(fm|Z) p-a.e.

On the other hand, the Maximal ergodic theorem gives:

(e Xosup |S,(F = Fan)(@)] > 2¢)) < 217 = Fulh

Letting M tend to infinity, we thus get:
. 1
pl{z e X, limsup S, f(2)] > 3e}) < p(Enr) + ZIF = fuly,

and the right hand side tends to 0 as M — +oo0. This shows that S, f — 0 p-a.e.
as desired.

Step 2: case when f is bounded. We already know, by the L' mean ergodic
theorem (Corollary 19.2) that the ergodic averages S, f converge in L. So

lim Sy fl1 = 0.

m—+00

Fix a large m and consider a larger n > m. Then write:

nmS,(Smf) = Y, foT™

0<i<n,0<j<m

and observe that in this sum each term f o TF with m < k < n appears m times
exactly, while the others appear at most m times and there are at most 2m other
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relevant values of k, so that makes at most 2m? other terms. Since f is bounded,
we conclude that:

nmSy, (Smf) = mnSyf + O(m?| f|w).

In particular as n — +00 and m stays fixed,

So if # € X is such that limsup,, |S,f(z)| > 2¢, then limsup,, |S,Snm f(x)] > 2¢
and in particular sup,, |\S,Sm f(z)| > 2¢. We can thus apply the Maximal ergodic
theorem to S, f and conclude that

. 1
p({z € X, limsup |5y, f(2)] > 2¢}) < Z[[Sm f1-

The left hand side is independent of m, so we can let m tend to infinity, and since
S flli — 0, we conclude that the left hand side is 0. Since e was arbitrary, this
means that S, f(z) — 0 for y-a.e. x as desired.

O

We have used the von Neumann Mean ergodic theorem in our proof of the
pointwise ergodic theorem. There are other routes that avoid it (see e.g. Norris’s
notes). Conversely it is an easy exercise to derive the mean ergodic theorem from
the pointwise theorem (basically truncating and applying Lebesgue’s Dominated
Convergence Theorem). The pointwise ergodic theorem was proven by George
Birkhoff (who, for the record, scooped out von Neumann by rushing his proof to
publication by December 1931, while von Neumann’s earlier discovery appeared
only in 1932.)

Remark 20.2. Another landmark theorem of real analysis is the Lebesgue differ-
entiation theorem we have alluded to earlier in the course (go to Part IT “Analysis
of function” in Lent to learn about it). There are striking similarities between the
statement and the proof of the pointwise ergodic theorem and the Lebesgue differ-
entiation theorem. Also related and to some extent a generalization of the above is
Doob’s martingale convergence theorem in probability theory.

A straightforward consequence of the pointwise ergodic theorem is the Strong
Law of Large numbers:

Corollary 20.3 (Strong Law of Large Numbers). Let (X,,)n>1 be i.i.d. random
variables in R? with finite first moment (i.e. E(|X1||) < o). Then

1 n
=Y Xi - E(Xy)
n 1

almost surely.

“Strong” refers to the fact that the convergence holds almost surely (while a
“weak law” gives convergence in probability). This was first proved in this gen-
erality by Kolmogorov (in 1930, by a different argument), who also showed that
the conclusion holds even if the X; are not identically distributed, but, say, have
the same average and bounded variance. Note that we have already proved the
Strong Law under the stronger assumption that there is a finite fourth moment
(see Theorem 10.19). As an alternative to the below, the strong law for finite mo-
ment of order 1 can also be obtained using a truncation argument by refining the
proof method of Theorem 10.19 above, see Williams’ lovely book “Probability with
Martingales”



PROBABILITY AND MEASURE 2019-2020 81

Proof. Let (2, F,P) be the probability space on which the random variables are
defined and (X, A, u,T) the associated canonical model. Since the (X,),’s are
iid., (X, A,u,T) is a Bernoulli shift (in particular ergodic). Define the function
fon X by f(x) = z1(z). It is in L1(X, A, ) because ||f|1 = E|X1] < 0. The
pointwise ergodic theorem implies that

Suf@) — | fau

for p-almost every z € X. But u = ®4(P), so §fdu = E(Xy) and S, f(z) =
LXi+... 4+ X,)(w) if 2 = ®(w) and ® : Q@ — X is the sample path map. The
result follow. 0

As a consequence of the ergodic theorem, one may give the following character-
ization of ergodic measures among invariant ones as extremal points. Let (X, .A)
be a measurable space and T : X — X a measurable self map. Let Z(X) be the
family of all T-invariant probability measures on (X,.A). A measure p € Z(X) is
said to be extremal if one cannot find p; # pe € Z(X) and t € (0,1) such that
w=tu + (1 —t)uz. We have:

Proposition 20.4. An invariant measure p € Z(X) is ergodic if and only if it is
extremal.

Proof. If p is not ergodic, then there is a T-invariant A € A with u(A4) € (0,1).
Set p1 = ﬁ“lA and po = ﬁﬂ,‘[qc. Then py # po are both T-invariant, while
w=tus + (1 —t)us for t = u(A). So p is not extremal.

Conversely, if p is ergodic, and p = tuy + (1 — t)ug for some py, ps € Z(X), then
given any B € A, the pointwise ergodic theorem applied to (X, A, 1) implies that
for p-almost every x, and hence for p;-almost every z (for both i = 1,2) we have

Sn(]-B) —n—+w0 N(B)

By Dominated Convergence, we conclude that p;(S,(15)) — u(B). But 4;(S,(1p))
wi(B). And it follows that u;(B) = u(B). Hence 1 = uo, and p is extremal. O
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