
PROBABILITY AND MEASURE, LECTURES NOTES

MICHAELMAS 2019-2020, E. BREUILLARD

Lecture 1

0. Plan for the course

Useful material for the course include:

‚ Lecture notes by James Norris available on the course’s website.
‚ the course syllabus approved by the Faculty Board (notice the asterisques

signaling non-examinable material). Note that although we will follow the syl-
labus very closely, the material will not be presented in the order suggested in the
“schedule” booklet: most importantly we first construct the Lebesgue measure (by
hand directly on Rd) and only then abstract Lebesgue’s theory to handle arbitrary
measure spaces (rather than present the abstract Carathéodory theorem first, as
suggested in the schedule (last revised in 1991...), then specialize to the case of
Lebesgue measure on R and wait until the existence of product measures is finally
proved in order to define Lebesgue measure on Rd).
‚ apart from the books listed in the syllabus, for the measure theory part of

the course I would recommend: T. Tao’s “An introduction to measure theory” as
well as W. Rudin’s classic “Real and Complex analysis”. Have a look at Halmos’s
“Measure theory” as well, another classic. For the Ergodic Theory bit at the end,
take a look at Einsiedler and Ward.
‚ a related Part II course is “Linear analysis”; following it is not mandatory, but

it can be helpful to understand some of the concepts from a different perspective.
A recommended follow-up to this course is the D-course “Analysis of functions”.

A rough plan for the course is as follows:

Week 1 Lebesgue measure
Week 2 Abstract measure theory
Week 3 Integration
Week 4 Measure theoretic foundations of probability theory
Week 5 Modes of convergence of random variables
Week 6 Lp spaces, Hilbert space techniques.
Week 7 Fourier transform, gaussian laws, Central Limit Theorem
Week 8 Ergodic theory

The notes below are essentially a write-up of the actual lectures, meant to help
the student revise her or his own notes. Occasionally there are some further dis-
cussion and explanation as well as few additional remarks that could not be given
during the lectures.

1. Boolean algebras and finitely additive measures

Let X be a set.

Definition 1.1. A Boolean algebra on X is a family B of subsets of X which

(i) contains ∅
(ii) is stable under finite union and under complementation.
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Note that obviously these assumptions imply that X P B and that B is also stable
under finite intersection AXB, set difference AzB, symmetric difference A4B.

Examples:

(1) the trivial Boolean algebra B “ t∅, Xu
(2) the discrete Boolean algebra B “ 2X “ the family of all subsets of X.
(3) If X is a topological space B “ the family of constructible sets, that is finite

unions of locally closed subsets (recall that a locally closed subset is one of
the form O X F , where O is open and F is closed).

Definition 1.2. A finitely additive measure (or mean) on pX,Bq is a function
m : B Ñ r0,`8s such that

(i) mp∅q “ 0
(ii) mpE Y F q “ mpEq `mpF q if E X F “ ∅, and E,F P B.

Note that a finitely additive measure is also sub-additive, namely mpE Y F q 6
mpEq `mpF q for all E,F P B, and monotone: if E Ă F , then mpEq 6 mpF q.

Examples:

(1) if X is any set and B “ 2X is the discrete Boolean algebra, set mpEq “ #E,
the number of elements in E Ă X, is called the counting measure on X.

(2) more generally if f : X Ñ r0,`8s is a function, then mpEq :“
ř

ePE fpeq
is a finitely additive measure.

(3) If X “
Ů

iXi is a finite partition of X and B is the Boolean algebra it
generates (i.e. subsets in B are unions of Xi’s), if we assign weights ai ě 0
to each Xi, we can set mpEq :“

ř

i;XiĂE
ai and get this way a finitely

additive measure on pX,Bq.

2. Jordan measure on Rd

This is a notion defined by Camille Jordan in the 19th century. Of course the
idea that one can compute the volume of a body by counting the number of small
cubes needed to approximate it within a reasonable error goes back (at least) to
Archimedes. The Jordan measure is an early attempt to formalise this idea. It
will be one of the aims of the course to explain how this first attempt has been
surpassed in the 20th century by the advent of Lebesgue measure and its subsequent
generalisation to abstract measure spaces that forms Measure Theory. So let us first
have a look at this notion.

Definition 2.1. A subset of Rd is called elementary if it is a finite union of boxes
B “ I1 ˆ ¨ ¨ ¨ ˆ Id, where Ii is a finite interval of R.

Recall that a finite interval of R has the form ra, bs or pa, bq or pa, bs or ra, bq for
some reals a 6 b. Given a box B we can define its volume |B| by setting

|B| “
d
ź

i“1

|ai ´ bi|

if B “ I1 ˆ ¨ ¨ ¨ ˆ Id, and pai, biq Ă Ii Ă rai, bis for each i.

Proposition 2.2. Let B “ I1 ˆ ¨ ¨ ¨ ˆ Id Ă Rd be a box as above and EpBq the
family of all elementary subsets of B. Then

(a) EpBq is a Boolean algebra,
(b) every E P EpBq is a finite union of disjoint boxes,
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(c) if E P EpBq is written in two different ways as a finite union of disjoint boxes,
i.e.

E “
N
ğ

i“1

Bi “
N 1
ğ

j“1

B1j ,

then
N
ÿ

i“1

|Bi| “
N 1
ÿ

j“1

|B1j |

Proof sketch. It helps to first convince oneself that this is true in dimension d “ 1.
The general case isn’t that much harder. Clearly the intersection of two boxes is
a box and if B1 Ă B2 are boxes, then B2zB1 is a finite union of disjoint boxes.
(a) follows. And (b) also, by induction on the number of boxes whose union is E.
(c) too is pretty obvious: writing E “

Ů

i,j Bi X B1j it is enough to prove it for
one box, say E “ B1 “ I1 ˆ ¨ ¨ ¨ ˆ Id, and this case is easily checked by refining
the partition pB1jqj into a grid partition of smaller boxes whose sides are arbitrary

pieces of the partition of each Ii formed by the projections of the B1j ’s onto the i-th
coordinate. �

Proposition-Definition 2.3. We may set

mpEq :“
N
ÿ

i“1

|Bi|

for each E P EpBq of the form E “
ŮN
i“1Bi a disjoint union of boxes. Then m

defines a finitely additive measure on the Boolean algebra pB, EpBqq.
Proof. It is well-defined and finitely additive by (c) of Proposition 2.2. �

Definition 2.4. A subset A Ă Rd is called Jordan measurable if for all ε ą 0 there
exist elementary subsets E,F with E Ă A Ă F such that

mpF zEq ă ε.

Remark 2.5. Equivalently A is Jordan measurable if for each ε ą 0 there is a

finite union of boxes F “
ŤN
i“1Bi containing A, such that F zA is contained in an

elementary set of measure ă ε.

Remark 2.6. Jordan measurable subsets of Rd are bounded (because so are ele-
mentary subsets).

Exercise/Example: If f : r0, 1s Ñ R is a continuous function, then the subgraph

tpx, yq P R2, x P r0, 1s, 0 6 y 6 fpxqu is Jordan measurable (thanks are due to Erik
Ma for catching a mistake in the formulation of that example in an earlier version
of these notes!)

Definition 2.7. If A Ă Rd is Jordan measurable, we may define its measure mpAq
by

mpAq “ inftmpF q, A Ă F, F elementaryu.

Note that mpAq is also equal to suptmpEq, A Ą E,E elementaryu, because by
the defining property of Jordan measurability, for every ε ą 0 there are elementary
sets E,F with E Ă A Ă F and mpF zEq ă ε. And by finite additivity of m, we
have mpEq “ mpF q ´mpF zEq ě mpAq ´ ε.

Proposition 2.8. If B Ă Rd is a box, then the class J pBq of Jordan measur-
able subsets of B forms a Boolean algebra and m is a finitely additive measure on
pB,J pBqq.
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Proof. It is immediate from the definition that J pBq is stable under complemen-
tation. It is also clear that it is stable under finite unions. So we have a Boolean
algebra. To see that it is finitely additive, i.e. mpAYA1q “ mpAq `mpA1q if A,A1

are disjoint in J pBq, use the previous remark to find for each ε ą 0 elementary
sets E Ă A and E1 Ă A1 with mpEq ě mpAq ´ ε and mpE1q ě mpA1q ´ ε. Clearly
E and E1 are disjoint, so mpE Y E1q “ mpEq `mpE1q ě mpAq `mpA1q ´ ε. This
yields mpAYA1q ě mpAq `mpA1q and the reverse inequality is clear by definition
of m. �

The notions of Jordan measurability for sets and Riemann integrability for func-
tions are tightly connected. In the example sheet, you will find the following

Exercise: Given a finite interval ra, bs of R, a subset E Ă ra, bs is Jordan measur-
able if and only if the indicator funtion 1Epxq is Riemann integrable.
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Lecture 2

3. Lebesgue measurable sets

There are some issues with the Jordan measure:

(i) unbounded sets in Rd are not Jordan measurable.
(ii) many simple minded bounded sets are not Jordan measurable, e.g. A :“

QXr0, 1s is not Jordan measurable (indeed if E Ă A Ă F with E,F elementary,
then E must be finite and F must contain r0, 1s, so mpF zEq “ 1).

(iii) as hinted in the exercise above, the integration theory associated to the notion
of Jordan measurability is the good old notion of Riemann integrability. This
has well-known shortcomings, for example pointwise limits of Riemann inte-
grable functions are not necessarily Riemann integrable, e.g. 1r0,1sX 1

n! Z “: fn
has fn Ñ f :“ 1QXr0,1s pointwise, and the fn’s are Riemann integrable, while
f isn’t. By the same token, an infinite series of Riemann integrable functions
may not be Riemann integrable, which was a major problem in the theory of
Fourier series.

For all these reasons mathematicians at the end of the 19th century looked for
another definition of measurability for subsets of Rd (and integrability for functions
on Rd) that would be more robust and give a sound basis to Analysis, which was
until then mostly confined to continuous functions. This is what Henri Lebesgue
achieved in 1901. His main idea: allow countable unions of boxes in Jordan’s
definition.

Definition 3.1. For any subset E Ă Rd we can define its Lebesgue outer-measure
as

m˚pEq :“ inft
ÿ

ně1

|Bn|, E Ă
ď

ně1

Bn, Bn a box in Rdu.

Here |B| is the volume of a box (i.e. the product of side lengths) as in the previous
lecture. Note that m˚ is translation invariant, namely m˚pE`xq “ m˚pEq for any
subset E Ă Rd and any x P Rd.

Definition 3.2. A subset E Ă Rd is called Lebesgue measurable if for all ε ą 0
there is C :“

Ť

nBn a countable union of boxes Bn’s, such that E Ă C and

m˚pCzEq ă ε.

Note that the family L is clearly invariant under translation: i.e. of E P L then
E ` x P L for every x P Rd. Clearly it also scales naturally: m˚pλEq “ λdm˚pEq
for all λ P p0,`8q.

Remark 3.3. In the above definitions, we may always assume that the boxes are
open (i.e. Cartesian products of d open intervals pai, biq). Indeed we can always

change Bn “
śd

1rai, bis into the slightly bigger B1n :“
śd

1pai ´ εn, bi ` εnq. This
will only affect the volume of each ball by a small amount: |B1n| 6 |Bn| ` ε2´n if
εn is chosen small enough and ε ą 0 is fixed but arbitrary, hence also the total sum
will be

ř

n |B
1
n| 6 ε`

ř

n |Bn| and this will not change the definition of m˚.

Remark 3.4. Note that every Jordan measurable set is clearly Lebesgue measur-
able.

The main proposition today is:

Proposition 3.5. (a) m˚ extends m, namely m˚pEq “ mpEq if E is Jordan mea-
surable.

(b) The family L of Lebesgue measurable subsets of Rd forms a Boolean algebra
stable under countable unions.
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(c) m˚ is countably additive on pRd,Lq.

Countably additive means that m˚p
Ť

ně1Enq “
ř

ně1m
˚pEnq for every count-

able (i.e. finite or countably infinite) family tEnun of pairwise disjoints subsets
from L.

From pbq we see that for example Q is a Lebesgue measurable subset of R and
so is Q X r0, 1s. When restricted to the class L of Lebesgue measurable sets the
outer-measure m˚ is called the Lebesgue measure.

Not every subset of Rd is Lebesgue measurable (we will see an example shortly,
assuming the axiom of choice). By the same token, we’ll also see that m˚ is not
even finitely additive on all subsets of Rd.

Remark 3.6. This remark can be skipped. There is an apparent asymmetry in
our definition of a Lebesgue measurable set in that we only approximate the set
E from above by a union of boxes and not also from below as in the original
definition of Jordan measurability. Our definition of Lebesgue measurability is
the exact analogue of the equivalent definition of Jordan measurability given in
Remark 2.5 from the last lecture. If we were to also approximate from below
by a countable union of boxes we would run into trouble: for example there are
closed subsets of r0, 1s (hence Lebesgue measurable as we shall see) that have empty
interior and positive Lebesgue measure (such as some Cantor sets, cf. the example
sheet), clearly those cannot be approximated from below by unions of boxes. This
asymmetry is responsible for the fact that, with our definition, it is not obvious
that the complement of a Lebesgue measurable set is again Lebesgue measurable
and we will have to work a bit to establish it.

It will take some time to prove Proposition 3.5 in full. Today we’ll prove (a).
Next time we’ll prove that open and closed sets are in L, and then establish that
L is stable under complementation, and finally prove (b) and (c). Actually the
hardest part of the proof of Proposition 3.5 will be to show that m˚ is finitely
additive. First we give some basic properties of m˚.

Lemma 3.7. The set function m˚ is

(i) monotone, i.e. A Ă B implies m˚pAq 6 m˚pBq,
(ii) countably sub-additive, i.e. for any countable family tAnun of subsets of Rd,

m˚p
ď

ně1

Anq 6
ÿ

ně1

m˚pAnq.

Proof. (i) is obvious and (ii) is pretty clear as well. Indeed pick ε ą 0 and let Cn :“
Ť

iě1Bn,i be a countable union of boxes such that An Ă Cn and
ř

iě1 |Bn,i| 6
m˚pAnq ` ε{2

n. Then
Ť

nAn Ă
Ť

n Cn “
Ť

n,iBn,i and

m˚p
ď

ně1

Anq 6
ÿ

n,i

|Bn,i| 6
ÿ

ně1

m˚pAnq ` ε{2
n “ ε`

ÿ

ně1

m˚pAnq,

and since ε is arbitrary we get:

m˚p
ď

ně1

Anq 6
ÿ

ně1

m˚pAnq

as desired. �

Now we make the following remark: assertions (a) and (c) of Proposition 3.5
clearly imply that the Jordan measure m is countably additive on Jordan measur-
able sets. In particular, if pEnqně1 is a decreasing sequence of elementary sets with
empty intersection, then

mpE1q “
ÿ

ně1

mpEnzEn`1q
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so

0 “ mpE1q ´ lim
NÑ`8

N´1
ÿ

n“1

pmpEnq ´mpEn`1qq “ lim
NÑ`8

mpEN q

This last property is known as the continuity property of the measure m. In fact
countable additivity is equivalent to the conjunction of finite additivity and the
continuity property (this is an Exercise in the Example sheet). So to sum up:
Proposition 3.5 implies that the Jordan measure has the continuity property on
elementary sets. Let us prove this directly, because this fact will be useful on the
way to the proof of Proposition 3.5.

Lemma 3.8. The Jordan measure has the continuity property on elementary sets,
namely if pEnqně1 is a non-increasing (for set inclusion, i.e. En`1 Ă En) sequence
of elementary sets with empty intersection, then

lim
nÑ`8

mpEnq “ 0.

Proof. The proof uses a basic topological property of Rd, namely the Heine-Borel
property that bounded and closed sets are compact. We argue by contradiction.
The limit exists, because the sequence mpEnq is non-increasing, so suppose it is
positive, say ą 2ε for some ε ą 0. Then mpEnq ě 2ε for all n. Recall that
elementary sets are finite union of boxes. Since the En may not be closed, we
can shrink a bit the sides of each box making En and find a closed elementary set
Fn Ă En such that mpEnzFnq ă ε{2n for each n ě 1. Then

mpEnzpF1X. . .XFnq “ mp
n
ď

i“1

pEnzFiqq 6
n
ÿ

1

mpEnzFiq 6
n
ÿ

1

mpEizFiq 6 ε
n
ÿ

1

2´i 6 ε

where we used the (finite) sub-additivity of m on elementary sets. In particular
mpF1 X . . .X Fnq ě ε, hence non-zero, for all n. But

Ş

n Fn is empty and the Fn’s

closed and bounded. Hence by Heine-Borel there is a finite N such that
ŞN

1 Fn is
empty. This is a contradiction. �

We now begin the proof of Proposition 3.5 proper.

Proof of (a) in Prop. 3.5. We need to show that m˚ extends m, the Jordan mea-
sure, on Jordan measurable sets. Note that we’ve already checked that mpBq “ |B|
in the first lecture.

First of all it is clear from the definitions that m˚pAq 6 mpAq for every Jordan
measurable set A.

We have to prove the reverse inequality. To begin with let us assume that A is an
elementary set. By definition of m˚, given ε ą 0 there is a countable family of boxes
Bn such that A Ă

Ť

nBn and
ř

n |Bn| 6 m
˚pAq ` ε. Let En “ AzpB1 Y . . .YBnq.

It is an elementary set. Moreover En`1 Ă En and
Ş

nEn “ ∅. So Lemma 3.8
applies and we get mpEnq Ñ 0. But

mpAq 6 mpAzpB1 Y . . .YBnqq `mpB1 Y . . .YBnq 6 mpEnq `
ÿ

i

|Bi|

which implies that mpAq 6 m˚pAq ` ε, and hence that mpAq 6 m˚pAq as desired.
Finally if A is an arbitrary Jordan measurable set, then by definition for each

ε ą 0 there is an elementary set E Ă A such that mpAq 6 mpEq ` ε. But
mpEq “ m˚pEq by the above, and m˚pEq 6 m˚pAq by monotonicity. Since ε is
arbitrary we conclude that mpAq “ m˚pAq. �
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Lecture 3

Recall our definition of the Lebesgue outer-measure m˚ and of Lebesgue mea-
surable sets from the last lecture. Recall that we proved that m˚ coincides with the
Jordan measure m on Jordan measurable sets. Today we will complete the proof
of Proposition 3.5 by showing that the complement of a Lebesgue measurable set
is Lebesgue measurable and that m˚ is countably additive. We will also discuss an
important example of non-measurable set.

We begin with the following

Proof that L is stable under countable unions. This is easy. If A “
Ť

ně1An and
each An P L, then for each ε ą 0 there are countable unions of boxes Cn :“

Ť

iBn,i
with An Ă Cn such that m˚pCnzAnq 6 ε{2n. Then

Ť

n Cn too is a countable union
of boxes and by sub-additivity of m˚ (Lemma 3.7)

m˚p
ď

n

CnzAq 6
ÿ

n

m˚pCnzAq 6
ÿ

n

ε{2n “ ε.

This shows that A P L. �

Lemma 3.9. If A “
Ş

nEn is a countable intersection of elementary sets En with
En`1 Ă En, then A is Lebesgue measurable and mpEnq Ñ m˚pAq. In particular
countable intersections of elementary sets are Lebesgue measurable.

Proof. Recall that elementary sets are finite union of boxes. If A is a countable
intersection of elementary sets, say A “

Ş

En, with En elementary, without loss of
generality we can assume that En`1 Ă En (simply replace En by E1 X . . . X En).
Then A Ă En and EnzA “

Ť

iěnEizEi`1. In particular

m˚pEnzAq 6
ÿ

iěn

m˚pEizEi`1q (3.1)

by sub-additivity of m˚. But EizEi`1 is elementary and we have seen that m “ m˚

on elementary sets, so
ÿ

iěn

m˚pEizEi`1q “
ÿ

iěn

mpEizEi`1q “ mpEnq ´ lim
iÑ`8

mpEiq 6 mpEnq ă `8

In particular the right hand side in p3.1q is the remainder of a convergent series
and, hence must tend to zero as n tends to infinity. This implies that A is Lebesgue
measurable (by definition). Also note that by sub-additivity:

m˚pAq 6 mpEnq “ m˚pEnq 6 m
˚pEnzAq `m

˚pAq,

which means that mpEnq Ñ m˚pAq as nÑ `8. �

Corollary 3.10. Every open and every closed subset of Rd is Lebesgue measurable.

Proof. Every open set is a countable union of open boxes, hence must be in L by
stability of L under countable unions. Now if C Ă Rd is closed, then C “

Ť

n CXBn,
whereBn is the closed box r´n, nsd. So to prove that C is in L it is enough to assume
that C is bounded, i.e. belongs to some open box B. But then BzC is open, hence
a countable union of boxes Bn contained in B. But BzBn is elementary. Hence
C “

Ş

nBzBn is a countable intersection of elementary sets, hence in L by the
previous lemma. �

Definition 3.11. A subset E Ă Rd is called a null set if m˚pEq “ 0.

Lemma 3.12. Null sets are Lebesgue measurable.
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Proof. This is clear: given any ε ą 0 there is a countable union of boxes C “
Ť

iBi
such that E Ă C and

ř

i |Bi| ă ε. In particular

m˚pCzEq 6 m˚pCq 6
ÿ

i

|Bi| ă ε.

�

Proof of (b) in Prop. 3.5. We have already proved that L is stable under countable
unions. We need to show that L is stable under complementation. Namely given
E P L we want to prove that Ec P L. Note first that it is enough to prove that BzE
is in L for any box B, because Ec “

Ť

nr´n, ns
dzE is a countable union of such sets

and L is stable under countable unions. By definition of Lebesgue measurability
for each n ě 1 there is a countable union of boxes Cn such that E Ă Cn and
m˚pCnzEq ă 1{n. But each BzCn is a countable intersection of elementary sets,
hence by Lemma 3.9, belongs to L. So F :“

Ť

nBzCn P L. Note that F Ă BzE
and that pBzEqzF is a null set, because for each n we have

m˚ppBzEqzF q 6 m˚ppBzEqzBzCnqq 6 m
˚pCnzEq ă 1{n.

So pBzEqzF is in L by the previous lemma, and hence BzE P L. �

We can now show that we can approximate any Lebesgue measurable set by
closed sets from below and open sets from above:

Proposition 3.13. Assume that E Ă Rd is a Lebesgue measurable subset and let
ε ą 0. Then there exists a closed subset F and an open set U such that F Ă E Ă U
and

m˚pUzF q ă ε.

Moreover E can be written as a disjoint union E “ BzN , where B is a countable
intersection of open sets and N is a null set (and analogously E “ C \M , where
M is null and C a countable union of closed sets).

Proof. For U we can take a countable union of open boxes U “
Ť

iBi such that
m˚pUzEq ă ε{2 as given by the definition of Lebesgue measurability. Now that
we know that the complement Ec is also in L, we can do the same for Ec and
find an open set Ω Ą Ec such that m˚pΩzEcq ă ε{2. Then set C “ Ωc. Clearly
ΩzEc “ EzC and C is closed, so we are done.

Now letting ε “ 1{n for each n we get an open set Un Ą E with m˚pUnzEq ă 1{n
and set B “

Ş

n Un. Then BzE is null (apply this to Ec to get the analogous
statement in brackets). �

Proof of (c) in Prop. 3.5. We need to show that m˚ is countably additive on L.
Namely given a countable family of pairwise disjoint subsets En from L we need to
show that

m˚p
8
ď

1

Enq “
ÿ

ně1

m˚pEnq.

We will prove this after a series of initial reduction steps.
(i) first reduction step: wlog we may assume that each En is a bounded subset of

Rd. Indeed, we may decompose Rd into a countable disjoint union of bounded sets
(e.g. let Bn “ r´n, ns

d exhaust Rd and write Rd “
Ů

nXn, where Xn :“ BnzpB1 Y

. . .YBn´1q). Then E :“
Ů

nEn “
Ů

n,mEnXXm, and each EnXXm is bounded, so

if m˚ is countably additive on bounded sets, then for each n,
ř

mm
˚pEn XXmq “

m˚pEnq and

m˚pEq “
ÿ

m,n

m˚pEn XXmq “
ÿ

n

m˚pEnq

as desired.
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(ii) second reduction step: it is enough to prove that m˚ is finitely additive on
bounded sets. Indeed, if the En’s are pairwise disjoint and bounded, for every N

N
ÿ

1

m˚pEnq “ m˚p
N
ď

1

Enq 6 m
˚p

8
ď

1

Enq 6
ÿ

ně1

m˚pEnq

where we used finite additivity on the left hand side and sub-additivity of m˚ on
the right hand side. Letting N tend to infinity we conclude that m˚p

Ť8

1 Enq “
ř

ně1m
˚pEnq.

So we are left to show that m˚ is finitely additive on bounded sets, or in other
words that

m˚pE Y F q “ m˚pEq `m˚pF q (3.2)

whenever E,F are disjoint bounded subsets from L. This will follow from the finite
additivity of m on elementary sets.

(iii) third reduction step: it is enough to prove p3.2q when both E and F are
countable intersections of elementary sets. Indeed, since E is bounded, I claim
that for each ε ą 0, there is a countable intersection of elementary sets C such that
m˚pEzCq ă ε (this is quite clear from the definition: there is a box B containing E,
and BzE belongs to L (we have already shown that L is a Boolean algebra!), so there
is a countable union of boxes U “

Ť

iBi containing BzE such that m˚pUzpBzEqq ă
ε. Just set C :“

Ş

ipBzpBXBiqq). Now do the same for F to get D Ă F a countable
intersection of elementary sets, such that m˚pF zDq ă ε. Finally if we knew that
m˚pC YDq “ m˚pCq `m˚pDq, then we would get:

m˚pEq`m˚pF q´2ε 6 m˚pCq`m˚pDq “ m˚pCYDq 6 m˚pEYF q 6 m˚pEq`m˚pF q

so letting εÑ 0 we would be done.
So it all remains to prove p3.2q under the assumption that both E and F are

countable intersections of elementary sets. For this we will use Lemma 3.9. Let
E “

Ş

n In and F “
Ş

n Jn, with In and Jn elementary. Without loss of generality
(replace In by I1X. . .XIn) we may assume that In`1 Ă In and similarly Jn`1 Ă Jn.
Now observe that

E Y F “
č

n

pIn Y Jnq

is also a countable intersection of elementary sets. Besides
Ş

npInXJnq “ EXF “
∅. We know by Lemma 3.9 that mpInq,mpJnq,mpInYJnq and mpInXJnq converge
respectively to m˚pEq,m˚pF q,m˚pE Y F q and 0. However by finite additivity of
m on elementary sets:

mpInq `mpJnq “ mpIn Y Jnq `mpIn X Jnq

which implies p3.2q in the limit as n Ñ `8. This ends the proof of Proposition
3.5(c).

�
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Lecture 4

Alright, we have now finished the proof of Proposition 3.5. Let’s sum up: we
have defined the class L of Lebesgue measurable subsets of Rd. We have shown that
it is a Boolean algebra stable under countable unions (and hence also countable
intersections!). Furthermore we have shown that the outer-measure m˚ (which
makes sense for arbitrary subsets of Rd) is additive and even countably additive
on L. We call it the Lebesgue measure. We’ve also shown along the way that
null sets are Lebesgue measurable and that every open and every closed subset
of Rd is Lebesgue measurable and actually every Lebesgue measurable set can be
“approximated” (up to sets of arbitrarily small measure) from below by a closed
subset and from above by an open subset. So one may wonder: is every subset of
Rd Lebesgue measurable? Well, assuming the axiom of choice (which is something
the overwhelming majority of mathematicians are willing to do), we will construct
a counter-example, i.e. a non-measurable subset. This example was found by
Guiseppe Vitali in the wake of Lebesgue’s discovery.

Vitali’s counter-example. We are going to construct a subset of R, which is not
Lebesgue measurable. The idea is to consider a set of representatives of the cosets
of the additive group of Q inside R. We could use any countable dense subgroup
of R in place of Q, but let’s use Q as Vitali did to make it more concrete. We also
restrict to r0, 1s for definiteness.

So let E Ă r0, 1s be a set of representatives of pQ,`q in pR,`q, namely in each
coset x ` Q we pick an element lying in r0, 1s. So E is such that for every x P R
there is a unique e P E such that x´ e P Q. Of course it is the axiom of choice that
allows us to assert that E is indeed a subset of R.

Claim 1. m˚ is not (finitely) additive on the family of all subsets of Rd.
Claim 2. E is not Lebesgue measurable.

Proof. Note that, by construction, if r1, ..., rN are N pairwise distinct rational
numbers, then the subsets ri ` E for i “ 1, ..., N are pairwise disjoint. So if m˚

were finitely additive on the Boolean algebra of all subsets of R, then we could
write:

m˚p
N
ď

1

pri ` Eqq “
N
ÿ

1

m˚pri ` Eq “ Nm˚pEq (3.3)

where we use the fact (this is clear, as we’ve already observed) that m˚ is translation
invariant. But if we assume that the ri’s belong to r0, 1s say, then ri ` E Ă r0, 2s
and so by monotonicity of m˚ we would get:

Nm˚pEq 6 m˚pr0, 2sq “ mpr0, 2sq “ 2

because we’ve already proved that m˚ “ m on elementary sets. Letting N tend to
`8 this would mean that

m˚pEq “ 0.

However by construction r0, 1s Ă
Ť

rPQpE`rq and hence, by countable sub-additivity

of m˚ we would get:

1 “ m˚pr0, 1sq 6
ÿ

rPQ

m˚pE ` rq “ 0

clearly a contradiction. This concludes the proof of Claim 1.
To see that E R L simply argue that otherwise E` r P L for each r P Q and thus

p3.3q would be legitimate because we’ve shown (Prop. 3.5) that m˚ is additive on
L. This would yield m˚pEq “ 0 as above and lead to the same contradiction. This
proves Claim 2.
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�

Remark 3.14. Note that the Vitali set E must have positive outer measure, i.e.
m˚pEq ą 0 because null sets are Lebesgue measurable. Someone asked in class
whether there are non-Lebesgue measurable sets of arbitrary (non-zero) measure.
The answer is clearly yes, because given some scaling factor λ ą 0, E is not in L
if and only λE is not in L, while m˚pλEq “ λm˚pEq can clearly achieve any value
as λ varies. In fact, λE will be a Vitali set for the dense additive subgroup λ´1Q.

A logical aside: the axiom of choice is independent of the Zermelo-Frenkel axioms
that form the foundation of most mathematics today. This means that neither it
nor its negation can be proven assuming only the ZF axioms. This was a major
result of 20th century Logic obtained by Kurt Gödel and Paul Cohen. In the 1970’s
the logician Robert Solovay went further to show that one can construct models of
the real numbers in ZF in which all subsets of R are Lebesgue measurable.

4. Abstract measure theory

Now that we’ve understood the construction of the Lebesgue measure, we are ripe
to lay the foundation of abstract measure theory. In the early 20-th century, after
Lebesgue’s ideas became widespread and accepted (despite some initial criticism)
by most mathematicians, people started to understand that they were much more
general, that Lebesgue’s construction could be made to work in the abstract, not
just on Rd but on any set, even without a topology. Even though Lebesgue himself
seemed to have been somewhat reluctant to generalisations, it was soon recognized
by people such as Felix Hausdorff, Constantin Carathéodory or Maurice Fréchet,
that one could gain a lot from such a point of view. Later developments, such as
Kolmogorov’s axiomatic approach to probability theory, proved them right.

Let X be a set.

Definition 4.1. A σ-algebra on a set X is a Boolean algebra of subsets of X, which
is stable under countable unions.

Note that (taking complements) it is clearly also stable under countable inter-
sections. (the letter σ is for “countable”, it’s widespread notation, I don’t know the
rationale behind it).

Definition 4.2. A measurable space is a couple pX,Aq, where X is a set and A a
σ-algebra on X.

Definition 4.3. A measure on pX,Aq is a map µ : AÑ r0,`8s such that

(i) µp∅q “ 0
(ii) µ is countably additive, i.e.

µp
ğ

ně1

Enq “
ÿ

ně1

µpEnq

if the En’s are in A and pairwise disjoint.

A triple pX,A, µq is then called a measure space.

Examples

(1) pRd,L,mq, where m is the Lebesgue measure, is a measure space (this is
content of Proposition 3.5).

(2) If A0 P L then m0pEq :“ mpA0 X Eq defines another measure on pRd,Lq.
(3) pX, 2X ,#q is a measure space (where 2X is the discrete Boolean algebra

and # counting measure).
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(4) pick a sequence panqně1 of non-negative real numbers, then pN, 2N, µq is a
measure space, where µpIq “

ř

iPI ai defines the measure for every subset
I Ă N.

Proposition 4.4. Let pX,A, µq be a measure space.

(a) µ is monotone, i.e. for A Ă B in B we have µpAq 6 µpBq.
(b) µ is countably sub-additive, i.e. µp

Ť

ně1Enq 6
ř

ně1 µpEnq for every sequence
of sets En P A.

(c) We have upward monotone convergence, i.e. if E1 Ă E2 Ă . . . Ă En Ă . . . are
all in A, then

µp
ď

n

Enq “ lim
nÑ`8

µpEnq “ sup
ně1

µpEnq.

(d) and downward monotone convergence, i.e. if E1 Ą E2 Ą . . . Ą En Ą . . . are all
in A, and if µpE1q ă 8, then

µp
č

n

Enq “ lim
nÑ`8

µpEnq “ inf
ně1

µpEnq.

Caveat: note the extra condition in (d): it is necessary to assume that µpE1q ă 8.
On the real line with Lebesgue measure, you could take for instance En “ rn,`8q
and see that mpEnq “ `8 for all n, while

Ş

nEn is empty.

Proof. (a) write µpBq “ µpBzAq ` µpAq.
(b) write

Ť

En “
Ů

Fn, where Fn “ EnzpE1 Y . . . Y En´1q, so µp
Ť

nEnq “
ř

µpFnq 6
ř

µpEnq.
(c) set E0 “ ∅. Write

Ť

En “
Ů

Fn as in (b). We have:

N
ÿ

1

µpFnq “
N
ÿ

1

µpEnq ´ µpEn´1q “ µpEN q

and by countable additivity of µ, we have µp
Ť

Enq “
ř

n µpFnq, so letting N Ñ `8

we get what we wanted.
(d) Apply (c) to E1zEn. �

Definition 4.5. Let pX,A, µq be a measure space. It is called finite if µpXq ă 8
and σ-finite if there is a countable sequence En of subsets from A such that X “
Ť

nEn and µpEnq ă 8 for all n.

Example pRd,L,mq is σ-finite but not finite.

Definition 4.6. A measure space pX,A, µq is called a probability space and µ a
probability measure if µpXq “ 1.

Proposition-Definition 4.7. If F is a family of subsets of X, then the intersec-
tion of all σ-algebras containing F is a σ-algebra, called the σ-algebra generated by F
and denoted by σpFq.

Proof. This is an easy check, see the Example sheet. �

Example

(1) If X “
ŮN

1 Xi is a finite partition of X and F “ tX1, . . . , XNu, then σpFq
is the family of all unions of Xi’s. It is the Boolean algebra generated by
F .

(2) if X is a countable set, F the family of singletons (i.e. one-element subsets),
then σpFq “ 2X the discrete Boolean algebra on X.

Now comes a very important definition.
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Definition 4.8. Suppose that X is a topological space (i.e. a set endowed with a
collection of “open sets” that forms a topology). The σ-algebra generated by all open
subsets is called the Borel σ-algebra of X and is denoted by BpXq. Its elements are
called Borel sets.

Remark 4.9. We’ve shown that every open set is Lebesgue measurable and that L
is a σ-algebra, so this means that BpRdq is contained in L, i.e. every Borel subset of
Rd is Lebesgue measurable. It is not very difficult to prove (see a course in Logic)
that there are Lebesgue measurable sets that are not Borel. In fact the cardinal of
BpRdq is strictly smaller than the cardinal of L. The reason behind it is that every
subset of a null set is null and hence Lebesgue measurable, while there it is not

necessarily Borel. This gives at least 22
CardpRq

Lebesgue measurable sets, but there
are at most 2Card R Borel sets.

Proposition 4.10. Let X “ Rd, then BpXq Ă L and moreover, every A P L can
be written as a disjoint union A “ B \N , where B P BpXq and N is a null set.

Proof. We have already proved these facts in Proposition 3.13 above (note that
every closed set is Borel and so is every countable union of closed sets). �

Remark 4.11. The σ-algebra of Borel sets of a topological space X is usually much
larger than the family of constructible sets (i.e. the Boolean algebra generated by
open sets). More generally, if F is any family of subsets of a set X, then the Boolean
algebra βpFq generated by F can be explicitly described: the elements of βpFq are
all finite unions of the subsets of the form

F1 X . . .X Fn

where for each i “ 1, . . . , n either Fi or its complement F ci lies in F (see the Example
Sheet). This is notoriously not so for σpFq. The process of taking alternatively
countable unions and countable intersections ad libitum does not stabilize in finitely
many steps: this leads to the notion of Borel hierarchy and a full description of
BpXq requires transfinite induction. See a Logic and Set Theory course.

Definition 4.12 (Borel measure). A Borel measure on a topological space X is a
measure on Borel σ-algebra of X.



PROBABILITY AND MEASURE 2019-2020 15

Lecture 5

We now come to the construction of measures on σ-algebras. As we have seen in
the construction of the Lebesgue measure, it is often easy to build a finitely additive
measure on a natural Boolean algebra (e.g. the Jordan measure on elementary
subsets of a box) and it is then a goal to extend this measure to the induced σ-
algebra and hope to get this way a countably additive measure on a larger class of
sets. This is what we did to build the Lebesgue measure on Lebesgue measurable
sets. It turns out that this idea can be performed in exactly the same way in
complete generality in the setting of abstract measure spaces.

Let X be a set, B a Boolean algebra of subsets of X and µ a finitely additive
measure on B (i.e. a finitely additive non-negative set function defined on B).

Definition 4.13. Say that µ has the continuity property if for any non-increasing
sequence of sets En P B with empty intersection such that µpE1q ă 8, we have

lim
nÑ`8

µpEnq “ 0.

We’ve already see (in Proposition 4.4) that if B is a σ-algebra and µ a genuine
measure (i.e. countably additive) on B, then µ has the continuity property. So the
continuity property is a necessary condition on µ for it to ever admit a possible
extension to a genuine measure on the σ-algebra generated by B. The content of
the following theorem is that it is actually also sufficient.

Theorem 4.14. (Carathéodory extension theorem) Let X be a set, B a Boolean
algebra of subsets of X and µ a σ-finite finitely additive measure on B with the
continuity property. Then µ extends uniquely to a measure µ˚ on the σ-algebra
σpBq generated by B.

This is also sometimes called the Hahn-Kolmogorov extension theorem (but this
attribution is probably not quite right, because Kolmogorov himself attributes it
to Caratheodory in his book, and there is another Kolmogorov extension theorem
having to do with defining probability measures on infinite stochastic processes,
which is related but quite different).

Here the σ-finite condition on µ means that there is a countable family pXnqn

of subsets of X such that
Ť

nXn “ X and for all n, Xn P B and µpXnq ă 8. Even
though we will use it in the proof (and in all interesting examples I know it holds),
the σ-finiteness assumption can be dropped for the existence part but is essential
to the uniqueness part.

The construction mimics word-by-word the construction we have made for the
Lebesgue measure. In particular we define

Definition 4.15. the outer-measure µ˚ of an arbitrary subset E of X by

µ˚pEq “ inft
ÿ

i

µpBiq;E Ă
ď

i

Bi, Bi P Bu

where the family tBiu is countable.

And we

Definition 4.16. say that a subset E Ă X is µ˚-measurable if for every ε ą 0 it is
contained in a countable union C :“

Ť

nBn of sets from B such that µ˚pCzEq ă ε.

The existence part of Caratheodory’s theorem then follows from

Proposition 4.17. Under the assumptions of Theorem 4.14, the family B˚ of µ˚

measurable subsets of X is a σ-algebra containing B (called the completion of B
with respect to µ). The outer-measure µ˚ is countably additive on B˚ and coincides
with µ on B.



16 PROBABILITY AND MEASURE 2019-2020

We’ll prove the uniqueness part of Theorem 4.14 next time as a consequence of
Dynkin’s lemma.

Proof. As it turns out we have already proven Proposition 4.17, because the proof
we gave of Proposition 3.5 for the existence of the Lebesgue measure, works ver-
batim in our generalized setting. In fact the definitions we have given today were
geared to make all previous arguments work in this abstract setting. This is the
power of the axiomatic method! That said, it is still a good exercise to check this by
yourselves. You will have to replace the words “boxes” and “elementary set” by the
word “element of B”. At some point we considered bounded subsets of Rd: replace
this notion by the word “contained in Xn for some n”, where Xn is any family of
sets in B such that µpXnq ă 8 and X “

Ť

nXn. At some point we also used the
Heine-Borel property, but this was only to establish the continuity property for the
Jordan measure, which we assume here. Everything else works verbatim. �

Note that B˚ contains all null sets (i.e. sets with zero µ˚-measure). In the case
of Rd and the Boolean algebra generated by elementary sets, B˚ coincides with L,
while σpBq is the Borel σ-algebra.

Of course the main and defining example of use of Caratheodory’s extension
theorem is the construction of the Lebesgue measure from the Jordan measure, but
we will see several more examples in this course, in probability theory in particular.

A side remark: Paul Halmos in his well-known book and James Norris in his
lecture notes take a slightly different route to define µ˚ and the notion of µ˚-
measurability, which is closer to Lebesgue’s original definition. A set is said to be
µ˚-measurable if the sum of its outer measure and that of its complement equals
µpXq (assuming this is finite). These two approaches are equivalent (see the Ex-
ample sheet). Ours sticks more closely to the intuitive idea that the measure of a
set is given by the smallest number of cubes needed to cover it.

Another side remark: although Borel measures on abstract topological spaces
may at first sight look much more complicated and rich than the good old interval
endowed with Lebesgue measure, this is not so. It can be shown that if X is
a compact metric space and µ a probability measure on its Borel σ-algebra B
giving mass zero to each point, then there is a measure preserving (measurable)
isomorphism between pX,B˚, µq and pr0, 1s,L,mq.

5. Uniqueness of measures

We now discuss π-systems and the problem of uniqueness of measures.

Definition 5.1. Let X be any set. A family F of subsets of X is called a π-system
if it

(1) contains the empty set, and
(2) is stable under finite intersections.

So this is a weaker notion than being a Boolean algebra. The reason for in-
troducing it is the following proposition and lemma that help in proving that two
measures are the same: it is enough to check that they are the same on a π-system
generating the σ-algebra.

Proposition 5.2. (measure uniqueness) Let pX,Aq be a measurable space and
µ1, µ2 be two finite measures on X such that µ1pF q “ µ2pF q for all F P F Y tXu,
where F is a π-system such that σpFq “ A. Then µ1 “ µ2.

For the proof we will require:
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Lemma 5.3. (Dynkin’s lemma) If F is a π-system and F Ă C, where C is a
family of subsets of X, which is stable under complementation and disjoint countable
union, then σpFq Ă C.

Proof of Proposition 5.2. Let C “ tA P A, µ1pAq “ µ2pAqu. Note that C is stable
under complementation, because µ1pXzAq “ µ1pXq “ µ1pAq, and also stable under
disjoint countable unions by σ-additivity of both measures. By Dynkin’s lemma,
we conclude that σpFq Ă C, so C “ A. �

Remark 5.4. While the conclusion may fail in general if µ1 and µ2 are infinite
measures, it very easy to see that it continues to hold under the following mild
additional assumption: that there is a countable family of subsets Fn P F each of
finite measure and such that X “

Ť

n Fn.

Proof of Dynkin’s lemma. Let M be the smallest family of subsets of X containing
F and stable under complementation and disjoint countable union (note that such
an M exists, it is the intersection of all such families). We need to show that M is
a Boolean algebra (note that this will clearly imply that M is a σ-algebra, because
as we have already seen any countable union of sets from a Boolean algebra can be
written as a disjoint countable union of such sets).

So let
M1 :“ tA PM, AXB PM @B P Fu.

Then M1 again is stable under complementation and disjoint countable union (note
that Ac XB PM because it is pBc \ pAXBqqc). And clearly, by definition of M1,
since F is a π-system and thus stable under intersection, we have F Ă M1. Now
by minimality of M we conclude that M1 “M.

Similarly set
M2 “ tA PM, AXB PM @B PMu.

Then again M2 is stable under complementation and disjoint countable union, so
by minimality M2 “ M. So M is a Boolean algebra, and hence a σ-algebra as
desired. �
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Lecture 6

A simple consequence is:

Proposition 5.5. Lebesgue measure is the unique translation invariant measure
m on pRd,BpRdqq such that mpr0, 1sdq “ 1.

Recall that BpRdq denotes the σ-algebra of Borel subsets of Rd. And translation
invariant means that mpA` xq “ mpAq for all A P BpRdq and all x P Rd.

Proof. The fact that m is translation invariant is clear, because the outer measure
m˚ is obviously translation invariant. So we have to prove the uniqueness. Let µ be
a measure as in the statement of the proposition. Let F be the family of all boxes in
Rd. Note that F is a π-system made of Borel sets such that σpFq “ BpRdq (because
every open set is a countable union of boxes). So by the previous proposition (and
Remark 5.4) it is enough to show that µ “ m on F .

In fact it is enough to check that µ “ m on Fd, the family of dyadic boxes (i.e.
boxes with side lengths of the form k

2n , k, n P Z), because of upwards monotone
convergence (every box is an increasing union of dyadic boxes).

Also, given a coordinate hyperplane H (i.e. H “ tx P Rd, xi “ 0u for some i) in
Rd we have µpHq “ 0 by translation invariance (otherwise some cube, a translate of
r0, 1sd, would intersect H in a set of positive measure, and by translation invariance
we could pack infinitely many translates of this intersection inside the same cube
contradicting the finiteness of µpr0, 1sdq).

Now we can write r0, 1sd as a union of 2nd translates of the dyadic box r0, 1
2n s

d,
each having the same measure (by translation invariance, because the boundaries
are contained in hyperplanes of measure zero). So by additivity µpr0, 1

2n s
dq “ 2´nd.

And since any dyadic box is an almost disjoint (i.e. with overlaps confined to
hyperplanes, hence of measure zero) finite union of translates of such small cubes,
by translation invariance again we get that µpBq “ mpBq for all dyadic boxes B as
desired. �

We end with two remarks:

Remark 5.6. There are no countably additive translation invariant measure µ
defined on the family of all subsets of R and such that 0 ă µpr0, 1sq ă 8 (because
Vitali’s counter-example would lead to a contradiction in exactly the same way as
we have discussed already).

Remark 5.7. However (assuming the Axiom of Choice) there are finitely additive
ones (one says that R{Z is a discrete amenable group), but this requires some
functional analysis (e.g. the Markov-Kakutani fixed point theorem).

6. Measurable functions

Definition 6.1. Let pX,Aq be a measurable space. A function f : X Ñ R is said
to be measurable with respect to A if for all t P R

tx P X, fpxq ă tu P A.

Following this definition, we make two initial remarks. The first is that if f is
measurable, then the pre-image f´1pBq of any Borel subset B P BpRq belongs to A.
This is clear, because on the one hand the family of all such subsets B is a σ-algebra
and on the other hand the family of all intervals p´8, tq for t P R, generates the
σ-algebra of Borel subsets of R.

The second remark is that it is sometimes convenient to extend the notion of
measurability to functions that can take the value `8 or ´8. In that case we say
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that f is measurable (w.r.t A) if additionally the sets tx P X, fpxq “ `8u and
tx P X, fpxq “ ´8u are in A.

More generally we can define the notion of measurable map between any two
measurable spaces.

Definition 6.2. A map f : X Ñ Y between two measurable spaces pX,Aq and
pY,Bq is called measurable if f´1pBq P A for all B P B.

To have a better feel for the notion of measurability of a map, let us give some
examples:
Examples:

(1) every continuous function f : Rd Ñ R is measurable: indeed tx P Rd, fpxq ă tu
is an open set.

(2) if pX,Aq is a measurable space and E Ă X a subset, then E P A if and only if
the indicator function 1E is A-measurable.

(3) if X “ \N1 Xi is a finite partition of a set X with non-empty pieces. Let A
be the Boolean algebra generated by the pieces Xi’s (so its elements are the
unions of pieces). Then a function f : X Ñ R is measurable (with respect to
A) if and only if it is constant on each Xi. In this case we see that the set of
all measurable functions on pX,Aq forms a real vector space of dimension N .

As these examples demonstrate, the notion of measurability of a function on X
is very sensitive to the choice of σ-algebra A. Being measurable with respect to A
means, roughly speaking, that the value of the function at a point x depends only
on the family of sets from A that contain x.

In Analysis, mathematicians often work with a single σ-algebra: the Borel σ-
algebra (or its completion, the Lebesgue measurable sets) but consider various
measures on this space. In Probability the opposite is true: the measure is given,
while the σ-algebra may vary a lot. In Information Theory the sigma algebra can
be interpreted as the precision at which one can understand a given function or
signal, the coarser the subalgebra is (i.e. the fewer subsets of X it contains), the
less information one can retrieve from a function measurable w.r.t this subalgebra.

The class of measurable functions is very handy and stable under several basic
operations (a much wider range of operations than say for the class of piecewise
continuous functions on R):

Proposition 6.3. (a) given three measurable spaces, the composition f˝g : X Ñ Z
of two measurable maps f : X Ñ Y and g : Y Ñ Z is measurable.

(b) the family of measurable functions on a measurable space pX,Aq forms an R-
algebra: namely if f, g are two such functions then so is f ` g, fg and λf for
any scalar λ P R.

(c) If pfnqně1 is a sequence of measurable functions on pX,Aq, then lim sup fn,
lim inf fn, inf fn, sup fn are also measurable.

Proof. (a) is clear, (b) follows from (a) once it is shown that the maps

R2 Ñ R

px, yq ÞÑ x` y

and

R2 Ñ R

px, yq ÞÑ xy

are measurable (for the Borel σ-algebra on R2). This is the case, because the sets
tpx, yq P R2, x` y ă tu and tpx, yq P R2, xy ă tu are both open, hence Borel.

(c) This follows from the following translations:
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(i) inf fnpxq ă t ðñ x P
Ť

ntfnpxq ă tu and inf fnpxq “ ´8 ðñ x P
Ş

kě1

Ť

ntx, fnpxq ă ´ku.

(ii) sup fnpxq ă t ðñ x P
Ť

mě1

Ş

ntfnpxq ă t´ 1
mu

(iii) lim inf fnpxq ă t ðñ x P
Ť

mě1

Ş

k

Ť

něktx, fnpxq ă t´ 1
mu

(iv) lim sup fnpxq ă t ðñ x P
Ť

mě1

Ť

k

Ş

něktx, fnpxq ă t´ 1
mu

�

Proposition 6.4. Let pX,Aq be a measurable space and f : pX,Aq Ñ Rd a
map. Then f is A-measurable if and only if each fi is A-measurable, where
f “ pf1, . . . , fdq.

Proof. (ñ) note that tx P X, fipxq ă tu “ f´1pty P Rd, yi ă tuq for each i. So if f
is A-measurable, so is each fi.

(ð) conversely if fi is measurable for all i, then f´1p
ś

rai, bisq “
Şd

1tx P X, ai 6

fipxq 6 biu is in A. But boxes
śd

1rai, bis generate the Borel σ-algebra BpRdq. So
f´1pBq P A for all B P BpRdq.

�

Definition 6.5. If X is a topological space, a function f : X Ñ R is called Borel
measurable (or simply Borel) if it is measurable with respect to the Borel σ-algebra
BpXq.
Remark 6.6. (i) the preimage of a Lebesgue measurable subset of R by a mea-

surable function need not be measurable (this is due to the wealth of null sets,
cf. 2nd example sheet)

(ii) the image of a measurable set under a measurable map need not be measurable
(e.g. if the target space is endowed with the trivial σ-algebra (the one made
of only ∅ and the whole set) then every map is measurable).

(iii) worse: the image of a Borel set by a continuous function need not be mea-
surable. In fact there exists a Borel subset B Ă R2 such that π1pBq Ă R is
not Lebesgue measurable, where π1px, yq “ x is the projection onto the first
coordinate (this was Lebesgue’s famous mistake!).

7. Integration

We now begin the construction of the integral. As we will see, we are going to
be able to integrate any non-negative measurable function defined on any measure
space pX,A, µq.
Definition 7.1. A simple function on a measure space pX,A, µq is a function of

the form
řN

1 ai1Ai , with ai ě 0, Ai P A for each i “ 1, . . . , N .

Note that a simple function is non-negative and measurable. Equivalently, it is
straightforward to verify that a simple function on pX,Aq is a measurable function
admitting only finitely many values, all non-negative.

Example 7.2. Let I be a countable set endowed with the discrete σ-algebra (i.e.
all subsets of I) and a measure µ. Then a simple function is just a non-negative
function on I admitting finitely many values. Moreover µpfq “

ř

iPI fpiqµptiuq.

Lemma 7.3. If a simple function f has two representations f “
řN

1 ai1Ai “
řM

1 bj1Bj , then
N
ÿ

1

aiµpAiq “
M
ÿ

1

bjµpBjq.

(We have taken the fonction 0 ¨8 “ 0 in case some Ai or Bj has infinite measure
and the corresponding coefficient is zero.)
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Proof. We omit the proof, this is an exercise in the first Example sheet. �

We can now define the integral of the simple function f with respect to µ by

µpfq :“
N
ÿ

1

aiµpAiq.

We will also use another standard notation for the same quantity:
ż

X

fdµ

which is closer to the original leibnizian notation for the integral. Note that µpfq P
r0,`8s.

Having defined µpfq for (non-negative) simple functions, we are ready to extend
the definition to all non-negative measurable functions. We do this as follows: given
a non-negative measurable function (i.e. @x P X, fpxq ě 0, we abbreviate this as
f ě 0), we define

µpfq :“ suptµpgq, g 6 f, g simpleu. (7.1)
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This is consistent with the case when f is simple, by piq of the following

Proposition 7.4 (Positivity of the integral). Suppose f, g are non-negative mea-
surable functions on pX,A, µq.

(i) (positivity) f ě g implies µpfq ě µpgq,
(ii) (equality case) if f ě g and µpfq “ µpgq is finite, then f “ g almost every-

where.

To say that f “ g almost everywhere means that tx P X, fpxq ‰ gpxqu has µ-
measure 0, i.e. is a null set (note that this set belongs to A because f is measurable).
It is often abbreviated as f “ g a.e., or equivalently for µ-a.e. x P X, fpxq “ gpxq.

Proof. First we verify that both items hold when f and g are assume to be simple
functions. This is pretty obvious given the definition and Lemma 7.3: just note
that f ´ g is again a simple function and that µpf ´ gq “ µpfq ´ µpgq. Then
piq is immediate for any non-negative measurable functions by p7.1q. Let’s prove
piiq. If An :“ tx P X, fpxq ´ gpxq ą 1

nu, then f ´ g ě 1
n1An pointwise. In

particular µpf ´ gq ě 1
nµpAnq by piq. However by p7.1q we have immediately

µpfq ě µpgq ` µpf ´ gq (we will see shortly below that there is in fact always
equality, but this half is obvious at this stage). Since we assumed that µpfq “ µpgq
we get µpf ´ gq “ 0 and so we get µpAnq “ 0, and by subadditivity µptx, fpxq ą
gpxquq 6

ř

n µpAnq “ 0. �

Note that the converse is clear: if f, g are non-negative measurable functions
on pX,Aq such that f “ g µ-almost everywhere, then µpfq “ µpgq. Indeed if
E “ tx P X, fpxq “ gpxqu, then µpEcq “ 0 and thus for every simple function h
we will have µphq “ µph1Eq (by Lemma 7.3). In particular if h 6 f , then h1E 6 g
and thus µphq “ µph1Eq 6 µpgq, which yields µpfq 6 µpgq by p7.1q. By symmetry
µpfq “ µpgq.

Example 7.5. (i) In the previous example, µpfq “
ř

iPI fpiqµptiuq, and this holds
also for every non-negative function (note that all functions are measurable, because
the σ-algebra is the discrete one).

(ii) when pX,A, µq is pR,L,mq, and f is a Lebesgue measurable function, then
mpfq is called the Lebesgue integral of f . It coincides with the Riemann integral
of f in case f is assumed Riemann integrable (cf. Example sheet).

We defined the integral by means of simple functions. It is often useful to be
able to approximate any non-negative measurable function by simple functions as
follows:

Lemma 7.6. Let f ě 0 be a measurable function on the measure space pX,A, µq.
Then there is a sequence of simple functions gn with gn 6 gn`1 such that gn Ñ f
pointwise (i.e. @x P X, gnpxq Ñ fpxq).

Proof. One can take, for example, gn “
1
2n t2n mintfpxq, nuu, where txu denotes the

largest integer less or equal to x (to see that gn`1 ě gn note that t2yu ě 2tyu for
all y ě 0). �

We now move on to the main result regarding Lebesgue’s integration, namely
Lebesgue’s Monotone Convergence Theorem. This will be the key result, which will
imply the next two important statements: Fatou’s lemma and Lebesgue’s Domi-
nated Convergence Theorem. Together these three facts make Lebesgue’s integra-
tion theory much more powerful and versatile than Riemann’s. The scope and
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generality in which these results hold (i.e. on abritrary measure spaces) make them
ubiquitous in mathematics.

Theorem 7.7 (Monotone Convergence Theorem, MCT). Let fn ě 0 be a sequence
of non-negative measurable functions on a measure space pX,A, µq such that

0 6 f1 6 f2 6 . . . 6 fn 6 . . .

Let fpxq “ limn fnpxq P r0,`8s for each x P X. Then

µpfq “ lim
nÑ`8

µpfnq.

Lemma 7.8. If g is simple, the map

mg : AÑ r0,`8s

E ÞÑ µp1Egq

is a measure on pX,Aq.

Proof. We need to check σ-additivity of mg. So let E “
Ů

nEn a disjoint countable

union of sets from A. Then we have µp1Egq “
řN

1 aiµpEXAiq if g “
ř

ai1Ai . But
E ÞÑ µpE XAiq is σ-additive for each i, since µ is, hence so is mg. �

Proof of the MCT. We have fn 6 fn`1 6 f , so µpfnq 6 µpfn`1q 6 µpfq by piq in
Proposition 7.4. Hence limnÑ`8 µpfnq exists and is 6 µpfq.

We will now show the reverse inequality. To this end let g be a simple function
with g 6 f . Pick ε P p0, 1q and let En “ tx P X, fnpxq ě p1 ´ εqgpxqu. Then
X “

Ť

nEn and En Ă En`1). So we may apply upwards monotone convergence
for sets to the measure mg on pX,Aq and thus get:

lim
nÑ`8

mgpEnq “ mgpXq “ µpgq

but
p1´ εqmgpEnq “ µpp1´ εqg1Enq 6 µpfnq

where the last inequality follows from piq of Proposition 7.4. We conclude that

p1´ εqµpgq 6 lim
nÑ`8

µpfnq

holds for every simple function g 6 f and for all ε P p0, 1q. Letting ε tend to 0 we
deduce that µpfq 6 limnÑ`8 µpfnq as desired. �

We are now ready for

Lemma 7.9 (Fatou’s lemma). Let fn ě 0 be a sequence of non-negative measurable
functions (on a measure space pX,A, µq). Then

µplim inf
nÑ`8

fnq 6 lim inf
nÑ`8

µpfnq.

Remark 7.10. Strict inequality can occur. For example when pX,A, µq “ pR,L,mq
and we consider either of the following “moving bump” example: (i) fn “ 1rn,n`1s,

(ii) fn “
1
n1r0,ns, (iii) fn “ n1r 1n ,

2
n s

, where each time fn Ñ 0 pointwise, while

µpfnq “ 1.

Proof of Fatou’s lemma. Let gn :“ infkěn fk and g “ lim infnÑ`8 fn. Then gn`1 ě

gn ě 0 and gn Ñ g pointwise, so by the Monotone Convergence Theorem, we have
µpgnq Ñ µpgq. But gn 6 fn, so µpgnq 6 µpfnq by positivity (Proposition 7.4). And
thus: µpgq 6 lim infnÑ`8 µpfnq. �

So far we have defined the integral for non-negative measurable functions only. In
order to extend this definition to functions that can change sign, for any measurable
function f : X Ñ R, we set f` :“ maxt0, fu and f´ :“ p´fq`. Note then that
|f | “ f` ` f´ and f “ f` ´ f´. Moreover f`, f´ and |f | are clearly measurable.
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Definition 7.11. A measurable function f : pX,Aq Ñ R is said to be µ-integrable

if µp|f |q ă 8. In this case its integral is defined by µpfq :“ µpf`q ´ µpf´q.

So integrable functions as those measurable functions whose absolute value has
finite integral. Beware that f ě 0 can be measurable without being integrable,
even though µpfq is well-defined (and equals `8).

Proposition 7.12 (Linearity of the integral). Let f, g be measurable functions on
pX,A, µq and let α, β P R. If f, g are assumed integrable, then αf `βg is integrable
and

µpαf ` βgq “ αµpfq ` βµpgq. (7.2)

Moreover p7.2q also holds if we replace the integrability assumption on f, g by the
assumption that f, g and α, β are non-negative.

Proof. Write f “ f` ´ f´, α “ α` ´ α´ and β “ β` ´ β´ and expand αf ` βg.
It then becomes clear that the proof reduces to proving p7.2q in the case when
f, g, α, β are all non-negative. That µpαfq “ αµpfq is obvious from the definition
of the integral (by means of simple functions). So only µpf ` gq “ µpfq ` µpgq
needs to be shown. This is clearly true for simple functions (by the previous lemma
that any two different writings of a simple function give rise to the same value of
their integral). The general case follows by the Monotone Convergence Theorem
by approximating f and g by simple functions (Lemma 7.6). �

We are now ready for the following important theorem.

Theorem 7.13 (Lebesgue’s Dominated Convergence Theorem). Let f and pfnqně1

be measurable functions on a measure space pX,A, µq. Assume that there exists an
integrable function g such that for all x P X

(i) |fnpxq| 6 gpxq for all n ě 1,
(ii) limnÑ`8 fnpxq “ fpxq.

Then limnÑ`8 µpfnq “ µpfq and f is integrable.

In this result lies the main advantage of Lebesgue’s integration versus Riemann’s:
it allows to move the integral sign passed the limits and exchange the two. So it is
very powerful a tool.

Proof. Since |fn| 6 g for all n, passing to the limit we get |f | 6 g. It follows that f
is integrable and that g ` fn ě 0 for all n. Then Fatou’s lemma applies and yields

µpgq`µpfq “ µpg`fq “ µplim inf
nÑ`8

g`fnq 6 lim inf
nÑ`8

µpg`fnq “ µpgq` lim inf
nÑ`8

µpfnq

where we have also used the linearity of the integral. But µpgq ă 8, so

µpfq 6 lim inf
nÑ`8

µpfnq.

What we have just done for fn, we can do for ´fn. And this will give us:

´µpfq 6 ´ lim sup
nÑ`8

µpfnq.

This ends the proof. �
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We can upgrade slightly all three main statements (MCT, Fatou’s lemma, Lebesgue’s
DCT) as follows. We have assumed that the limits (or liminf) hold pointwise,
namely for each x P X. It turns out that the conclusion of all three results continue
to hold under the weaker assumption that the limits hold µ-almost everywhere. For
example in the MCT, we can assume that the assumptions fn ě 0 and fn`1 ě fn
only hold µ-almost everywhere, or in Lebesgue’s DCT, we can assume that each of
the two assumptions fpxq “ limn fnpxq and |fpxq| 6 gpxq only hold for µ-almost
every x:

Proof. For the MCT for example we can set En “ tx P X, fnpxq ě 0u, Fn “ tx P
X, fn`1pxq ě fnpxqu. Then the complement of E “

Ş

En X Fn is a µ-null set and
we can set f 1npxq “ 1Efnpxq and now apply the original MCT to f 1n to conclude
that µp1Efq “ limn µp1Efnq. But it follows from the definition of the integral p7.1q
that µpf1Eq “ µpfq and µpfn1Eq “ µpfnq for all n. Proceed similarly for Fatou’s
lemma and the DCT. �

We now pass to two important corollaries of Lebesgue’s Dominated Convergence
Theorem.

Corollary 7.14 (Exchange of
ş

and
ř

signs). Let pX,A, µq be a measure space
and pfnqně1 a sequence of measurable functions.

(i) if fn ě 0 for all n, then

µp
ÿ

ně1

fnq “
ÿ

ně1

µpfnq

(ii) if
ř

ně1 |fn| is µ-integrable (i.e. µp
ř

ně1 |fn|q ă 8), then so is
ř

ně1 fn, and

µp
ÿ

ně1

fnq “
ÿ

ně1

µpfnq.

Proof. piq Let gN “
řN

1 fn, then gN is a non-decreasing sequence of non-negative
functions, so we can simply appy the Monotone Convergence Theorem to reach the
deired conclusion.
piiq Let g “

ř

ně1 |fn|. Then |gN | 6 g for all N . So by Dominated Convergence,
we get µpgN q ÑNÑ`8 µplim gN q. �

Corollary 7.15 (Differentiation under the
ş

sign). Let pX,A, µq be a measure space
and let U Ă R be an open set. Let f : U ˆX Ñ R be such that

(i) x ÞÑ fpt, xq is µ-integrable for every t P U ,
(ii) t ÞÑ fpt, xq is differentiable for every x P X,

(iii) (domination) Dg : X Ñ R a µ-integrable function such that for all t P U , and
all x P X

|
Bf

Bt
pt, xq| 6 gpxq.

Then x ÞÑ Bf
Bt pt, xq is µ-integrable for all t P U . Moreover, setting

F ptq :“

ż

X

fpx, tqdµpxq

F is differentiable on U , and

F 1ptq “

ż

X

Bf

Bt
pt, xqdµpxq.
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Proof. Let hn a sequence of positive real numbers such that limn hn “ 0. Set

gnpt, xq :“
1

hn
rfpt` hn, xq ´ fpt, xqs,

which given t P U is defined as soon as t ` hn P U , and in particular for all large
enough n. By the Mean Value Theorem there exists θt,x,n P rt, t` hns such that

gnpt, xq “
Bf

Bt
pθt,x,n, xq.

Hence for each t, for all large enough n and for all x P X,

|gnpt, xq| 6 gpxq.

Moreover for all t P U and x P X, limn gnpt, xq “
Bf
Bt pt, xq. But

µpgnpt, xqq “

ż

X

gnpt, xqdµpxq “
1

hn
rF pt` hnq ´ F ptqs,

so by Dominated Convergence, we get

lim
n

1

hn
rF pt` hnq ´ F ptqs “

ż

X

Bf

Bt
pt, xqdµpxq.

So F is differentiable at t and its derivative F 1ptq is equal to the right hand side. �

You will see several examples of use of these theorems in the Example sheets.
To end this section we make (without proof) several remarks that can be skipped

in first reading:

Remark 7.16. If f : ra, bs Ñ R is continuous (a ă b real numbers), then it is
integrable with respect to the Lebesgue measure m, and moreover

mpfq “

ż b

a

fpxqdx

where the latter is ordinary Riemann integral of f . More generally one can show
that if f is only assumed to be a bounded function, then f is Riemann integrable if
and only if the set of points where f is not continuous has Lebesgue measure zero
(see the Example sheet).

Remark 7.17 (Fundamental Theorem of Calculus). We’ve learned in a basic course
on differential calculus the Fundamental Theorem of Calculus, according to which
a function f : ra, bs Ñ R assumed to be differentiable with continuous derivative
(that is a C1 function) satisfies

fpbq ´ fpaq “

ż b

a

f 1pxqdx. (7.3)

What happens if we relax the hypotheses a bit? Well it depends and it is an in-
teresting chapter of Analysis to determine under what conditions the Fundamental
Theorem of Calculus still holds. It turns out that it is enough to assume that f is
differentiable and f 1 is integrable w.r.t. Lebesgue measure (see Rudin’s book). It is
also enough to assume that f is a Lipschitz function: in that case it can be shown
that f differentiable almost everywhere, its derivative is integrable and p7.3q holds.
On the other hand it is not too difficult to construct examples of non-descreasing
and non-constant continuous functions such that f 1pxq “ 0 almost everywhere for
Lebesgue measure, so that clearly p7.3q fails (see the “Devil’s staircase cosntruc-
tions” as in Ex 12 in the 1st Example sheet). More about this, and in particular a
proof of the main result in this area, the Lebesgue Density Theorem (whose proof
bares a lot of resemblance to the that of the pointwise ergodic theorem) is given in
the Lent term D-course “Analysis of Functions”.
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Remark 7.18 (invariance of Lebesgue measure under affine maps). We have shown
that Lebesgue measure is invariant under translation. It also behaves very well
under linear transformations. Namely if g P GLdpRq and f ě 0 is a non-negative
measurable function on pRd,L,mq, then

mpf ˝ gq “
1

|det g|
mpfq.

In particular m is invariant by rotation on Rd (see the Example sheet).

More generally, one can use the previous remark to establish the following useful:

Change of variables formula: Assume that U, V are open subsets of Rd and that

φ : U Ñ V is a C1-diffeomorphism, then
ż

U

fpφpxqqJφpxqdx “

ż

V

fpxqdx

where dx is short for dmpxq the Lebesgue measure, f ě 0 is an arbitrary Borel
measurable map on V and Jφpxq :“ |det dφpxq| is the Jacobian of φ, i.e. the
absolute value of the determinant of its differential.

The details of the (slightly boring) proof can be found in Rudin’s book as well
as in many other textbooks. The same formula clearly holds (looking at positive
and negative parts of f) if we change the assumption f ě 0 and assume instead
that f integrable on V with respect to Lebesgue.

Next we comment on a the relation between measure theory and linear function-
als, which is at the basis of Bourbaki’s approach to integration:

Remark 7.19 (Riesz Representation theorem). Let X be a topological space,
which is locally compact (i.e. every point has a compact neighborhood) and second
countable (i.e. there is a countable basis of open sets for the topology). A Radon
measure on X is a Borel measure µ, which is finite on every compact subset of X.
If µ is a Radon measure, then the map:

CcpXq Ñ R

f ÞÑ µpfq “

ż

X

fdµ

defines a linear functional on the normed vector space of continuous and com-
pactly supported functions CcpXq on X endowed with the supremum norm }f}8 :“
supxPX |fpxq|. Moreover |µpfq| 6 }f}8µpSupppfqq, where

Supppfq :“ tx P X, fpxq ‰ 0u

is the (compact) support of f . And the functionial is non-negative, i.e. f ě 0 ñ
µpfq ě 0.

It turns out that this is a characterization of Radon measures: every non-negative
linear functional on CcpXq is of the form µpfq for a certain Radon measure µ on
X. This is called the Riesz representation theorem for locally compact spaces (see
Rudin’s book on Real and Complex analysis for a proof).

This functional analytic point of view leads to an integration theory (in which
one defines a measure as a non-negative linear functional) that serves most purposes
of analysis on locally compact spaces and has been the preferred route to present
integration theory among mathematicians for a while (cf. Bourbaki’s volumes on
integration). Its drawback is that it is confined to locally compact spaces and hence
less general than the route via abstract measure theory we have presented in these
lectures, and unsuitable for much of probability theory.
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8. Product measures

Definition 8.1 (Product σ-algebra). Let pX,Aq and pY,Bq be measurable spaces.
Then the σ-algebra generated by all product sets A ˆ B with A P A and B P B is
called the product σ-algebra of A by B and is denoted by Ab B.

Remark 8.2. piq note that the family of product sets (i.e. A ˆ B, A P A and
B P B) forms a π-system.
piiq by analogy with the notion of product topology in topology, the product σ-
algebra is the smallest σ-algebra on XˆY making both projection maps (to X and
to Y ) measurable (this is a trivial check).
piiiq for the Borel σ-algebras on Rd, we have the following nice compatibility:

BpRd1q b BpRd2q “ BpRd1`d2q.

However this is not so for the σ-algebra of Lebesgue measurable sets (the product
of two copies of LpRq is not complete, so strictly smaller than LpR2q, see the 2nd
Example sheet).

Example: if X “
ŮN

1 Xi and Y “
ŮM

1 Yj are finite partitions of two sets and A
(resp. B) is the Boolean algebra generated by this partition of X (resp. Y ), then
Ab B is the Boolean algebra generated by the partition pXi ˆ Yjq16i6N,16j6M of
X ˆ Y .

The following lemma says that every vertical slice of a AbB-measurable set is it-
self B-measurable (and of course vice versa: every horizontal slice is A-measurable).

Lemma 8.3. If E Ă X ˆ Y is A b B-measurable, then for all x P X the slice
Ex :“ ty P Y, px, yq P Eu is B-measurable.

Proof. Note that C :“ tE Ă X ˆ Y,Ex P B@x P Xu contains all subsets of the form
E ˆ F with E P A and F P B. And it is a σ-algebra. Indeed if E P C, then so
does its complement Ec, because pEcqx “ ty P Y, px, yq P E

cu “ pExq
c. Similarly if

En P C for all n, then
Ť

nEn P C because p
Ť

nEnqx “
Ť

pEnqx. This means that
Ab B Ă C. �

Lemma 8.4. Assume that pX,A, µq and pY,B, νq are σ-finite measure spaces and
let f : X ˆ Y Ñ r0,`8s be Ab B-measurable. Then

(a) for all x P X, y ÞÑ fpx, yq is B-measurable,
(b) x ÞÑ

ş

Y
fpx, yqdνpyq is A-measurable.

Proof. (a) the special case f “ 1E for any E P AbB was exactly the content of the
previous lemma. This implies the case when f achieves only finitely many values,
i.e. when f is a simple function. The general case follows, because f is a limit of
simple functions (see Lemma 7.6).

(b) By the same token we may assume that f “ 1E for some E P A b B. Now
we may write Y “

Ť

m Ym, where Ym`1 Ă Ym and νpYmq ă 8 for all m. Note that
it is enough to show that x ÞÑ νpEx X Ymq is A-measurable for each m. Indeed:

ż

Y

1Epx, yqdνpyq “ νpExq “ lim
m
νpEx X Ymq

Then we can consider the family

C “ tE P Ab B, x ÞÑ νpEx X Ymq is A-measurable for all mu

and observe that
(i) C contains all E “ AˆB, because νpEx X Ymq “ 1ApxqνpB X Ymq
(ii) C is stable under complementation: νppEcqx X Ymq “ νpYmq ´ νpYm X Exq
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(iii) C is stable under disjoint countable unions: if E “
Ů

nEn, then

νpEx X Ymq “
ÿ

n

νppEnqx X Ymq

so by Dynkin’s lemma we conclude that C is the σ-algebra generated by the π-
system of product sets. So C “ Ab B. �
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Proposition-Definition 8.5 (Product measure). Let pX,A, µq and pY,B, νq be σ-
finite measure spaces. Then there exist a unique measure σ on the product σ-algebra
Ab B such that for all A P A and all B P B we have:

σpAˆBq “ µpAqνpBq.

The measure σ is called the product measure and is usually denoted by µb ν.

Proof. Let us first prove the existence of such a measure. For E P Ab B we set:

σpEq :“

ż

X

νpExqdµpxq,

where Ex is the vertical slice defined above. It is well-defined because the function
x ÞÑ νpExq is A-measurable by Lemma 8.4 (b) applied to f “ 1E . It is also
countably additive: this is a consequence of the Monotone Convergence Theorem:

σp
ğ

n

Enq “

ż

X

ÿ

n

νppEnqxqdµpxq “
ÿ

n

ż

X

νppEnqxqdµpxq “
ÿ

n

σpEnq.

As for uniqueness, it follows immediately from Dynkin’s π-system uniqueness
lemma (cf. Prop. 5.2), because the family of all product sets AˆB, A P A, B P B
clearly forms a π-system, which by definition generates Ab B. �

Remark 8.6. The σ-finiteness assumption is essentially a technical assumption
that holds in most cases of interest, but it is important for the uniqueness clause
in the previous definition.

Remark 8.7. Another route to establish the existence of the product measure is
to apply Caratheodory’s extension theorem to the Boolean algebra generated by
product sets. This is possible and close to what we did in the first lecture regarding
the Jordan measure (as one first needs to show that this Boolean algebra is made of
disjoint finite unions of product sets and extend to measure to these sets), but also
requires some work (and the Monotone Convergence Theorem) to establish that it
has the continuity property.

Remark 8.8. One can also define the product measure on the product of more
than two measurable spaces, i.e. Ab Bb C on X ˆ Y ˆZ, simply by iterating the
above construction. One checks easily (exercise!) that this operation is associative
(i.e. pAbBqbC “ AbpBbCq) and the resulting σ-algebra, and product measure,
is independent of the order in which the products are taken.

Example: The Lebesgue measure on Borel subsets of Rd is the (d-fold) product
measure of the Lebesgue measure on R.

Theorem 8.9 (Fubini-Tonelli theorem). Let pX,A, µq and pY,B, νq be σ-finite
measure spaces.

(a) If f : X ˆ Y Ñ r0,`8s is Ab B-measurable, then
ż

XˆY

fdµb ν “

ż

X

`

ż

Y

fpx, yqdνpyq
˘

dµpxq “

ż

Y

`

ż

X

fpx, yqdµpxq
˘

dνpyq. (8.1)

(b) If f : X ˆ Y Ñ R is µb ν-integrable, then for µ-almost every x, y ÞÑ fpx, yq is
ν-integrable and x ÞÑ

ş

Y
fpx, yqdνpyq is µ-integrable. Moreover p8.1q holds.

Proof. (a) holds for f “ 1E and any E P A b B by Lemma 8.4. So it holds for
simple functions and hence, thanks to the Monotone Convergence Theorem, for all
non-negative measurable f .

(b) write f “ f` ´ f´ and apply (a) to f` and f´. �
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Remark 8.10. Note that µbνp|f |q “ µbνpf`q`µbνpf´q, so if this is finite, then
both terms are finite and by (a)

ş

X

` ş

Y
f˘px, yqdνpyq

˘

dµpxq ă 8, which implies

that tx P X,
ş

Y
f˘px, yqdνpyq “ 8u is a µ-null set.

Example: The assumption that f is µ b ν-integrable is necessary in general to be
able to swap the order of integration. A silly example is given by X “ Y “ N and
A “ B “the discrete σ-algebra of all subsets with µ “ ν “counting measure, and
for all n,m ě 1,

fpn,mq “ 1n“m ´ 1n“m`1

Clearly, @m ě 1,
ř

ně1 fpn,mq “ 0, while for all n ě 2
ř

mě1 fpn,mq “ 0 and
ř

mě1 fp1,mq “ 1. So we see that
ÿ

n

ÿ

m

fpn,mq ‰
ÿ

m

ÿ

n

fpn,mq.

Remark 8.11. This theorem applies in particular to Lebesgue measure on Rd

provided the function f is Borel-measurable on Rd. There is also a version of this
theorem (and of Lemma 8.4) that holds for all Lebesgue measurable functions on
Rd as well (see next remark).

Remark 8.12 (Completed version). As mentioned above the product measure
µb ν on the product σ-algebra may not be complete (i.e. sub-null sets, i.e. subsets
of µ b ν-null sets from A b B, may not be in A b B) even though both µ and
ν are complete. So it is often implicit to automatically complete µ b ν to the
completed σ-algebra Ab B (i.e. the family of sets that are unions of subsets from
A b B with sub-null sets, see the Example sheet 1). Then Theorem 8.9 continues
to hold verbatim with Ab B in place of Ab B (exercise!). On the other hand, the
corresponding analogues of Lemma 8.3 and Lemma 8.4 (a) only hold for µ-almost
every x P X, because for example a set of the form E “ A ˆ B, where A P A is
µ-null, while B R B will be µbν-null (hence Ab B-measurable) and yet its slices Ex
for x P A will not be in B. At any case Theorem 8.9 holds for Lebesgue measurable
functions on Rd1 ˆ Rd2 .

9. Foundations of Probability Theory

In 1933 Kolmogorov published his famous treatise “Foundations of the Theory
of Probability” (or rather “Grundbegriffe der Wahrscheinlichkeitsrechnung” as he
wrote it first in German) in which he laid down the mathematical foundations of
probability theory, making use, for the first time, of the then recent formalism of
abstract measure theory and arguing that it is the right framework and language in
which to develop rigourously the calculus of probabilities. We follow his footsteps
in our lecture today.

For a lovely recent book with a historical point of view and a modern perspective
on what probability and statistics are really about, I recommend “Ten great ideas
about chance” by Diaconis and Skyrms (2018).

We will fix the ambient set Ω. Probabilists call it a universe. It is the set of all
possible outcomes. An element of Ω is an outcome ω, namely one of many possible
scenarios that might happen. In probability theory, we usually fix the universe once
and for all.

The family F of subsets of Ω will be the family of all possible events, or subsets
of possible outcomes that could take place. By assumption it is a σ-algebra of
subsets of Ω. A subset in F is called an event.

Now the odds that an event, say A P F occurs, is a number

PpAq P r0, 1s
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called the probability of A. The natural axioms are:

piq PpA or Bq “ PpAq ` PpBq

provided A and B are disjoint, i.e. they cannot occur simultaneously.

piiq PpΩq “ 1,Pp∅q “ 0

and the continuity axiom: if An is a non-increasing sequence of events that cannot
occur simultaneously (i.e. An`1 Ă An and

Ş

nAn “ ∅q, then

lim
nÑ`8

PpAnq “ 0.

The first two axioms turn P into a finitely additive measure on pΩ,Fq and the last
one (which is harder to justify empirically given that it depends on infinitely many
events, but it still very reasonable to take for granted) make it a (countable additive)
measure (recall that a finitely additive measure with the continuity property is
countably additive, see Exple sheet).

Recall:

Definition 9.1. A measure µ on a measurable space pΩ,Fq is called a probability
measure if µpΩq “ 1.

In probability theory it is customary to give different names to notions that
we have already defined in measure theory. It’s only a cultural difference, but the
objects are the same. For example a measurable function is called a random variable
and the integral is called expectation.

Definition 9.2. Given a probability space pΩ,F ,Pq (namely a measure space with
a measure P of total mass 1), a measurable function f : Ω Ñ R is called a
random variable and is usually denoted by a capital letter X or Y . Similarly the
P-integral is called the expectation and is denoted by E. An event A is said to hold
almost surely if PpAq “ 1.

So for example we will write EpXq in place of
ş

X
fdP, etc. More generally we can

defined Rd-valued random variables X “ pX1, ..., Xdq. These are the same thing as
vectors of d real valued random variables.

Now comes an important definition.

Definition 9.3. A random variable X on pΩ,F ,Pq determines a Borel measure
µX on pR,BpRqq by

µXpAq “ PpX P Aq

for every Borel set A P BpRq. The measure µX is a probability measure called the
law of X or the distribution of X.

In other words the probability distribution µX is the image measure of P under
the map X : Ω Ñ R. In general, given a measurable function f : pY,Aq Ñ pZ, Cq be-
tween two measurable spaces, and given a measure µ on pY,Aq the image measure,
denoted by f˚µ is the measure on pZ, Cq defined by

f˚µpCq :“ µpf´1pCqq. (9.1)

Note that, clearly, if µ is a probability measure, so is f˚µ.
The function t ÞÑ FXptq :“ PpX 6 tq is called the distribution function of X.

(the notation PpX 6 tq is a shorthand for Pptω P Ω, Xpωq 6 tuq.

Remark 9.4. By the same token, one can define the distribution of an Rd-valued
random variable X “ pX1, . . . , Xdq. This is the Borel probability distribution
µpX1,...,Xdq on Rd defined by µpX1,...,XdqpAq “ PppX1, . . . , Xdq P Aq for any Borel

subset A P BpRdq.
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Example 9.5 (Archimedes’ theorem). Suppose we pick a point on the sphere uni-
formly at random. Call this random point ω. Consider the orthogonal projection of
this point onto the north-south axis. What is the probability that it is closer to the
center of the sphere than it is from either pole?

Answer: 1
2 . We can formalize this problem within the above framework. Here

Ω will be the Euclidean sphere, F the family of Borel subsets of the sphere (note
that they are precisely the intersections of Borel sets of R3 with the sphere), and P
will be the Lebesgue measure on the sphere, normalized so it has total mass 1 (to
define it, one can for example take Lebesgue measure on R3 restricted to the unit
ball minus t0u, renormalize it so it has total measure 1 and take its image (as we
have just defined) under the projection map R3zt0u Ñ Ω, x ÞÑ x{}x}.).

Then pΩ,F ,Pq will be a probability space and the orthogonal projection Y pωq will
be measurable (Borel measurable, because it is in fact continuous). The distribu-
tion of Y pωq can be easily computed (exercise!): it turns out that it is the uniform
distribution on the north-south axis, i.e. Lebesgue measure on that interval, renor-
malized so as to have total mass one. This is easily checked via calculus, and is a
fairly remarkable fact, going back to Archimedes.

So if Xpωq is the distance between Y pωq and the north pole, then µY is the
uniform probability measure on the interval r0, 2s and FXptq “ PpX 6 tq “ t

21tPr0,2s.



34 PROBABILITY AND MEASURE 2019-2020

Lecture 10

Proposition 9.6. Let pΩ,F ,Pq be a probability space. Let X : Ω Ñ R be a random
variable. Then the distribution function FX is non-decreasing and right-continuous.
Moreover FX determines µX uniquely.

Proof. It is clear from the definition that FX is non-decreasing. So see the continuity
claim, let tn ě t be a sequence such that tn Ñ t. Then the events tX 6 tnu “
tω P Ω, Xpωq 6 tnu form a non-increasing sequence of events whose intersection is
exactly tX 6 tu. By downward monotone convergence for sets, we conclude that
PpX 6 tnq Ñ PpX 6 tq as desired.

As for uniqueness, it follows from Dynkin’s lemma, given that the family of all
intervals p´8, ts for t P R forms, together with the empty set, a π-system generating
the Borel σ-algebra BpRq. �

Proposition 9.7. Conversely, if F : R Ñ r0, 1s is a non-decreasing, right contin-
uous function with limtÑ´8 F ptq “ 0 and limtÑ`8 F ptq “ 1, then there exists a
unique Borel probability measure µF on R such that for all t P R,

F ptq “ µF pp´8, tsq.

Remark 9.8. The measure µF is called the Lebesgue-Stieltjes measure associated
to F . For all a ă b, we have

µF ppa, bsq “ F pbq ´ F paq. (9.2)

Proof of Proposition 9.7. The proof of uniqueness is the same as before (via Dynkin’s
π-system lemma). To show that such a measure exists, note that one can define
µF by p9.2q on half open intervals and this defines a finitely additive measure on
the Boolean algebra consisting of finite unions of disjoint half open intervals. To
show that this extends to a well-defined Borel probability measure on R, we need
to apply the Carathéodory extension theorem. And for this we only need to verify
that it has the continuity property. The proof that µF has the continuity property
is exactly the same as the one we gave for the continuity of the Jordan measure
on elementary sets (see Lemma 3.8, which was based on the Heine-Borel property).
One only needs to check that given a finite union of half-open intervals of the form
pa, bs it is possible to shrink them a tiny bit and find a1, a2 with a ă a1 ă a2 ă b so
that F pa2q is arbitrarily close to F paq (this is possible thanks to the right continuity
property of F ) and pa, bs Ą ra1, bs Ą pa2, bs. This way µF ppa, bsq and µF ppa

2, bsq will
be very close to each other, while ra1, bs is compact. The argument via Heine-Borel
then applies without change. �

There is a more direct way to construct the Lebesgue-Stieltjes measure associated
to F , which takes advantage of the fact that we have already defined the Lebesgue
measure (instead of proving the existence via the extension theorem, i.e. via the
same route used to construct the Lebesgue measure). And this is to view µF as the
image measure of the Lebesgue measure on the interval r0, 1s under the “inverse”
of F , namely the function

g : p0, 1q Ñ R

y ÞÑ gpyq :“ inftt P R, F ptq ě yu

Lemma 9.9. Given a function F : R Ñ r0, 1s as in Proposition 9.7, the “inverse
function” g defined by p??q is non-decreasing, left continuous, and satisfies:

@t P R,@y P p0, 1q, gpyq 6 t ðñ F ptq ě y. (9.3)



PROBABILITY AND MEASURE 2019-2020 35

Proof. This is an easy check. First observe that

Iy :“ tt P R, F ptq ě yu

is an interval in R, because if t ă t1 P Iy, then y 6 F ptq 6 F pt1q, because F is
non-decreasing, so y 6 F pt2q and hence t2 P Iy for every t2 P pt, t1q. This means
that Iy has the form

Iy “ “p”gpyq,`8q,

where the bracket “p” could a priori be either open p or closed r. But F is right
continuous, so the infinimum defining gpyq is realized and Iy “ rgpyq,`8q. This
shows p9.3q. Also if y1 6 y2, then Iy2 Ă Iy1 , so gpy1q 6 gpy2q. It remains to check
left-continuity of g. This is clear because if yn ă y and yn Ñ y, then

Ş

n Iyn “ Iy
by definition of Iy. So gpynq Ñ gpyq. �

Remark 9.10. If F is continuous and increasing, then g “ F´1 is the inverse of
F (i.e. F ˝ g is the identity on p0, 1q and g ˝ F the identity on R.)

Now let m be the Lebesgue measure on p0, 1q and set

µ :“ g˚m,

be image of m under g (see p9.1q), that is:

µpAq :“ mpg´1pAqq

for every Borel subset A Ă R. Then g is Borel measurable (because ty P R, gpyq 6
tu “ p0, F ptqs P Bpp0, 1qq), so µ is a Borel measure, and

µppa, bsq “ mpg´1ppa, bsqq “ mppF paq, F pbqsq “ F pbq ´ F paq

so by uniqueness, this is precisely the Lebesgue-Stieltjes measure constructed pre-
viously: µ “ µF .

We have seen that a random variable (i.e. a measurable function defined on a
probability space pΩ,F ,Pq) gives rise to a Borel probability measure on pR,BpRqq,
called the law or probability distribution of X. It is interesting to note that con-
versely every Borel probability measure arises this way:

Proposition 9.11. If µ is a Borel probability measure on R, then there exist a
probability space pΩ,F ,Rq and a random variable X such that µ “ µX . In fact one
can take Ω “ p0, 1q, F the Borel σ-algebra of the interval p0, 1q and P Lebesgue
measure on p0, 1q.

Proof. The first assertion is obvious if we set Ω “ R, F “ BpRq, P “ µ and define
the random variable by Xpxq “ x. To see that one can also do this on p0, 1q we can
use the distribution function F ptq :“ µpp´8, tsq and define the random variable X
as X “ g, the inverse of F , as in the previous discussion, that is:

Xpωq :“ inftt P R, F ptq ě ωu : p0, 1q Ñ R.

Then X is a random variable, because X is Borel measurable (we have seen that it
is non-decreasing and left continuous) and µX “ µ, because as we have seen:

PpX P pa, bsq “ mptω P p0, 1q, a ă Xpωq 6 bu

“ mptω P p0, 1q, F paq ă ω 6 F pbqu “ F pbq ´ F paq “ µppa, bsq.

�

Remark 9.12. If there exists f ě 0 measurable such that µXppa, bsq “
şb

a
fptqdt,

we say that X (or µX) has a density (with respect to Lebesgue measure). And f
is called the density function.
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Example 9.13 (Some examples of Borel probability measures on R). .

(1) the uniform distribution on r0, 1s has density fpxq “ 1r0,1s and distribution

function F ptq “
şt

´8
fpxqdx “ t1r0,1s.

(2) the exponential distribution with rate λ ą 0 is defined as

fpxq “ λe´λx1xě0,

while F ptq “ 1tě0p1´ expp´t{λq.
(3) the gaussian distribution with standard deviation σ ą 0 and mean m is

defined by its density

fpxq “
1

?
2πσ2

expp´
px´mq2

2σ2
q.

A wide-spread short-hand for the gaussian distribution is N pm,σ2q.
(4) the Dirac mass δm at m P R is the probability distribution defined as:

δmpAq “ 1mPA

for any Borel subset A Ă R. Its distribution function is Heavyside’s function
Hmptq :“ 1těm.

Definition 9.14. If X is a random variable (on a probability space pΩ,F ,Pq) we
define

(1) EpXq its mean (well-defined if X is P-integrable, i.e. if Ep|X|q ă 8),
(2) EpXkq its moment of order k P N (well-defined if Xk is integrable),

(3) VarpXq “ EpX2q ´ EpXq2 “ EppX ´ EpXqq2q its variance (well-defined if
X2 is integrable).

Remark 9.15. If f ě 0 is Borel measurable, then EpfpXqq “
ş

f ˝XpωqdPpωq “
ş

fpxqdµXpxq, because µX “ X˚P.
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Lecture 11

10. Independence

Today we discuss a central notion on probability theory, that of independence.
This notion gives a distinctive flavour to probability theory, which, until now could
have been mistaken for a sub-branch of measure theory.

Definition 10.1 (independence of events). Let pΩ,F ,Pq be a probability space. A
sequence of events pAiqiě1 is called mutually independent if for every finite subset
F Ă N we have

Pp
č

iPF

Aiq “
ź

iPF

PpAiq (10.1)

Remark 10.2. If pAiqiě1 is an independent sequence of events, then so is pBiqiě1,
where for each i, Bi is either Ai or its complement Aci . This is easily checked, for
example by writing Pp

Ş

iPF Biq “ Ep
ś

iPF 1Biq, where 1Bi is either fi or 1´fi with
fi :“ 1Ai , and then expanding the product.

Definition 10.3 (independence of subalgebras). A sequence of σ-subalgebras pAiqiě1

(Ai Ă F) is called mutually independent if for any event Ai P Ai the sequence of
events pAiqi is mutually independent.

Remark 10.4. Remark 10.2 above shows that if pAiqiě1 is an independent family
of events, then the sequence of subalgebras pAiqiě1 where Ai :“ t∅, Ai, Aci ,Ωu
forms an independent sequence.

Remark 10.5. A sooped-up version of the last two remarks is as follows. If Πi Ă Ai

is a π-system with σpΠiq “ Ai for all i, then it is enough to check p10.1q for Ai’s in
Πi to be able to claim that the pAiqi form an independent sequence. To see this (say
in the simple case when there are only two subalgebras) consider, for some event
A1 P Π1 the maps A ÞÑ PpA X A1q and A ÞÑ PpAqPpA1q and note that they both
are measures on pΩ,A2q with the same total mass and that they coincide on the
π-system Π2. Hence by Dynkin’s lemma, they must coincide on A2, so that p10.1q
holds now for all A1 P Π1 and all A2 P A2. Then apply this argument one more
time using the π-system Π1 instead and conclude that p10.1q holds for all A1 P A1

and all A2 P A2. A similar argument handles the general case of an arbitrary family
of subalgebras.

Notation 1. If X is a random variable, we will denote by σpXq the smallest σ-
algebra of F making X A-measurable, that is:

σpXq :“ σptω P Ω, Xpωq 6 tutPRq.

Definition 10.6. A sequence of random variables pXiqi>1 is called (mutually-)
independent if pσpXiqqiě1 is mutually independent.

Remark 10.7 (independence and product measure). By the previous remark, this
is equivalent to asking that for every finite subset F of indices and all ti P R,

PpXi 6 ti@i P F q “
ź

iPF

PpXi 6 tiq

or equivalently

µpXi1 ,...,Xid q “ µXi1 b ¨ ¨ ¨ b µXid

if F “ ti1, . . . , idu, where the above is the product of the laws µXi of the Xi’s, and
µpXi1 ,...,Xid q is the law of the Rd-valued random vector pXi1 , . . . , Xidq.
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So independence of two random variables can be read off the probability dis-
tribution of the pair: two random variables are independent if and only if the
distribution of the pair is the product of the two individual distributions.

Remark 10.8. If fi is a measurable function for each index i, and pXiqiě1 is
a sequence of (mutually-) independent random variables, then pfipXiqqi is also a
sequence of independent random variables. This is clear, because σpfpXqq Ă σpXq
for any random variable X and any measurable function f .

Proposition 10.9. If X,Y are independent non-negative random variables, then

EpXY q “ EpXq ¨ EpY q.

The same holds if X and Y are independent and integrable (and this implies that
XY is integrable).

Proof. This is an instance of the Fubini-Tonelli theorem applied to the function
fpx, yq “ xy on r0,`8q2 with the measure µpX,Y q “ µX b µY . �

Example: (Bernstein’s example) This example shows that pairwise independence
does not imply mutual independence. Let X,Y be two independent coin tosses.
That is X,Y P t´0, 1u and

PpX “ 0q “ PpY “ 0q “ PpX “ 1q “ PpY “ 1q “
1

2
.

Let Z :“ |X ´ Y |. Then it is straightforward to check that each of the pairs
pX,Y q, pY,Zq and pX,Zq is an independent pair. But the triple pX,Y, Zq is not
an independent triple, because:

PpZ “ 0q “ PpX “ Y q “
1

2

while

PppX,Y, Zq “ p1, 1, 0qq “
1

4
and

PpX “ 1 and Y “ 1qPpZ “ 0q “
1

8
‰

1

4
.

Example: decimal expansion. Let Ω “ p0, 1q, P “ m “ Lebesgue measure, and
F “ Bp0, 1q the Borel σ-algebra. Clearly pΩ,F ,Pq is a probability space.

Given ω P p0, 1q we may look at its decimal expansion ω “ 0.ε1ε2..., where
εn P t0, 1, ..., 9u. There is the usual indeterminacy of course that takes place when
ω is a decimal number, i.e. of the form a{10b for integers a, b, in which case there
can be two decimal expansions one of which ends with an infinite string of 9’s: in
that case, we can choose one of the two expansions, e.g. avoid infinite strings of 9.

Now set Xnpωq “ εn. This becomes a sequence of random variables on pΩ,F ,Pq
(it is plain to check that Xn is measurable).

Claim: The pXnqn’s form a sequence of independent random variables that are
uniformly distributed in t0, 1, ..., 9u.

In particular this means that PpXn “ iq “ 1
10 for each n ě 1 and i P t0, ..., 9u.

The claim is easily checked: the set of ω’s such that Xnpωq “ i is a union 10n´1 of
intervals of length 10´n. So we see that

PpX1 “ i1 and X2 “ i2 and ... and Xn “ inq “
1

10n
“

n
ź

j“1

PpXj “ ijq,

which means that the pXnqn’s are independent.
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Note that

ω “
ÿ

ně1

Xnpωq

10n

for all ω P p0, 1q.

Remark 10.10. It turns out that this is another way to build the Lebesgue measure
on R. Pick independent and uniformly distributed random variables Xn on t0, ..., 9u
on some probability space pΩ,F ,Pq and define a random variable

Y :“
ÿ

ně1

Xn

10n
.

Then, as the above example demonstrates, the law of Y is precisely the Lebesgue
measure on p0, 1q.

As an aside, one may further ask how to construct such a sequence (of inde-
pendent random variables) from scratch? (in the example, we have defined such
a sequence of independent variables, but our construction made use of Lebesgue
measure). The following proposition enables us to find a single probability space
on which to find a sequence of independent random variables with prescribed laws:

Proposition-Definition 10.11 (infinite product measure). Let tpΩi,Fi, νiquiě1

be a sequence of probability spaces. Let Ω “
ś

iě1 Ωi. Let C be the Boolean algebra

of cylinder sets, namely subsets of the form B :“ Aˆ
ś

iąn Ωi, where A Ă
śn
i“1 Ωi

belongs to the product σ-algebra F1 b . . . b Fn. Finally let F “ σpCq. Then there
exists a unique probability measure ν on pΩ,Fq such that

νpBq “ ν1 b . . .b νnpAq,

for every cylinder set B “ Aˆ
ś

iąn Ωi as above.

Proof. Apply Carathéodory’s extension theorem. See the 2nd example sheet. �

Now if µi is a Borel probability measure on R, then we know by Proposition 9.11
that there exists a random variable Yi on pp0, 1q,Bp0, 1q,mq whose law is precisely
µi. If we let Ωi “ p0, 1q, Fi “ Bp0, 1q and νi “ m the Lebesgue measure, then we
may form the infinite product Ω “

ś

Ωi as in the previous statement. Now we
may set Xipωq “ Yi ˝πi, where πi : Ω Ñ Ωi is the projection to the i-th coordinate.
This will yield an infinite sequence pXiqi of independent random variables on the
same probability space pΩ,F ,Pq such that Xi has law µi for each i.

Remark 10.12. The above is a special case of a more general theorem of Kol-
mogorov, the Kolmogorov extension theroem, that asserts that any family of mea-
sures µn defined

śn
1 Ωi and satisfying a necessary compatibility condition (the

projection of µn to the first m coordinates is assumed to coincide with µm) gives
rise to a unique measure on the infinite product, whose restriction to the cylinders
coincide with the µn’s.

We now pass to the Borel-Cantelli lemmas: let pΩ,F ,Pq be a probability space
and pAnqně1 a sequence of events.

Lemma 10.13 (1st Borel Cantelli lemma). If
ř

ně1 PpAnq ă 8, then

Pplim sup
n

Anq “ 0.

The lim sup of a sequence of events is the event A such that 1A “ lim supn 1An .
In other words

lim sup
n

An :“ tω P Ω, ω P An for infinitely many nu.

The next result is a sort of converse:
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Lemma 10.14 (2nd Borel Cantelli lemma). If
ř

ně1 PpAnq “ 8 and the pAnqně1’s
are mutually independent, then

Pplim sup
n

Anq “ 1.

Proof of both lemmas. (1) Ep
ř

n 1Anq “
ř

n PpAnq ă 8, so Pp
ř

n 1An “ 8q “ 0.
This proves the first lemma.

(2) plim supnAnq
c “

Ť

N

Ş

něN A
c
n, so exploiting the independence of the events

(and using Remark 10.2) we may write for any N 6M :

Pp
č

něN

Acnq 6 Pp
č

NďnďM

Acnq “
M
ź

N

p1´ PpAnqq 6 expp´
M
ÿ

N

PpAnqq

as 1´x 6 expp´xq for all x P r0, 1s. But the right hand side tends to 0 as M tends
to `8. So we get Pp

Ş

něN A
c
nq “ 0 for all N , hence Pplim supnAnq “ 1. This

proves the second lemma. �

The independence assumption in the second lemma can be relaxed. For example
it holds assuming only pairwise independence, while an even weaker assumption
(small correlation between the events) implies that the lim supnAn has positive
probability. See the 3rd Example sheet.

Example: the infinite monkey theorem. Imagine a monkey frantically typing at ran-
dom on a typewriter. What is the probability that he will eventually type the Song
of Songs? Answer: 1. Indeed the Song of Songs is a finite, say of length N , string
of characters (in its English translation that is, and the typewriter is assumed to
offer all the letters of the Latin alphabet). So if An is the event: “the string from
the nN `1-st character to the pn`1qN -th character is exactly the Song of Songs”,
then the An’s are (or quite close to be) independent events. And each happens
with probability K´N , where K is the number of keys on the typewriter. So the
series

ř

n PpAnq diverges and hence Pplim supnAnq “ 1.
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Definition 10.15. Let pΩ,F ,Pq be a probability space.

(a) a sequence of random variables pXnqně1 is called a random (or stochastic)
process.

(b) the σ-algebra Fn :“ σpX1, . . . , Xnq (which, by definition is the σ-algebra gen-
erated by the events tω P Ω, Xipωq 6 tiu for any i and ti P R) is called the n-th
term of the associated filtration. We have Fn Ă Fn`1 Ă F for all n,

(c) the σ-algebra T :“
Ş

ně1 σpXn, Xn`1, . . .q is called the tail σ-algebra of the
process. Its elements are called tail events.

Example: the events “pXnqn converges” or “lim supnXn ě T” are tail events.

Theorem 10.16 (Kolmogorov 0-1 law). Let pXnq be a family of (mutually inde-
pendent random variables. Then for all A P T we have

PpAq P t0, 1u.

Proof. Let A P T . Given n consider B P σpX1, . . . , Xnq. Then

PpAXBq “ PpAqPpBq (10.2)

because T is independent ofB. Let now Fn :“ σpX1, . . . , Xnq and F8 :“ σpX1, . . . , Xn, . . .q.
So the measures B ÞÑ PpAqPpBq and B ÞÑ PpAXBq coincide on

Ť

n Fn. As this is
a π-system generating F8, the measures coincide on F8. This means that p10.2q
holds for all B P F8. But T Ă F8. So it actually holds for B “ A. This means:

PpAq “ PpAq2,

or in other words PpAq P t0, 1u. �

Example: Let pXnqn be a sequence of i.i.d. (that is independent and identically
distributed) random variables with common law µ (a Borel measure on R). Assume
that for all T ą 0 we have PpX1 6 T q ă 1. Then lim supnXn “ `8 almost surely
(that is Pptω P Ω, lim supnXnpωq “ `8uq “ 1).

Indeed, to see this note that by Kolmogorov’s 0´1 law, we have Pplim supnXn “

`8q P t0, 1u. But
ř

n PpXn ě T q “ `8 for all T . So by the 2nd Borel-Cantelli
lemma we must have Pplim supnXn ě T q “ 1 for all T . Hence Pplim supnXn “

`8q “ 1.

Example (Very well approximable numbers):

Definition 10.17. A real number α P r0, 1s is called very-well approximable (VWA)
if there exists ε ą 0 and infinitely many q P Zzt0u such that }qα} ă 1{q1`ε, where
}x} :“ infnPZ |x´ n|.

Proposition 10.18. Lebesgue almost every α P r0, 1s is not VWA.

Proof. Fix ε ą 0. Let Ω “ r0, 1s, P Lebesgue measure, F the Borel σ-algebra. Let
Aq :“ tα P r0, 1s, }qα} ă 1{q1`ε}. Then PpAqq 6 q1{q2`ε, so

ř

qě1 PpAqq ă 8 and

hence, by the first Borel-Cantelli lemma, Pplim supq Aqq “ Pp“α is VWA”q “ 0. �

Here are three useful probabilistic inequalities:

(1) Cauchy-Schwarz: Let X,Y be two (real valued) random variables on a proba-
bility space pΩ,F ,Pq. Then

Ep|XY |q 6
a

EpX2qEpY 2q.
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(2) Markov’s inequality: If X ě 0 is a non-negative random variable, and λ ě 0,
then

λPpX ě λq 6 EpXq,

(3) Chebychev’s inequality: Let Y be a random variable, and λ ě 0, then

λ2Pp|Y ´ EpY q| ě λq 6 VarpY q.

The proofs are straigtforward. Recall that the proof of Cauchy-Schwarz is a
consequence of the fact that Eppt|X| ` |Y |q2q is a quadratic polynomial in t, which
is always non-negative: this implies that the discriminant ∆ “ 4ppEp|XY |q2 ´
EpX2qEpY 2qq is 6 0, which yields the Cauchy-Schwarz inequality.

The proof of Markov’s inequality is clear: EpXq ě EpX1Xěλq ě λEp1Xěλq “
λPpX ě λq. And the proof of Chebychev’s follows from Markov’s applied to X “

pY ´ EpY qq2 and recalling that the variance VarpY q is equal to EpY 2q ´ EpY q2 “
EpXq.

The Markov and Chebychev inequalities are extermely useful to get upper bounds
on the probability that a random variable is large, or deviates from its mean by a
certain amount. Indeed it is often easier to estimate the expectation EpXq or the
variance VarpY q, rather than to directly compute the probabilities on the left hand
side of these inequalities.

We now prove a landmark result from probability theory, the law of large num-
bers:

Theorem 10.19 (Strong law of large numbers). Let pXnqně1 be a sequence of i.i.d.
(i.e. independent and identically distributed) random variables with common law
µ (= a Borel measure on R). Assume that

ş

R |x|dµpxq “ Ep|X1|q is finite. Then,
almost surely,

1

n

n
ÿ

i“1

Xi ÑnÑ`8 EpX1q “

ż

R
xdµpxq.

Proof. We give a short proof under the additional assumption that X1 has a finite
moment of order 4. The proof assuming only a finite moment of order 1 is much
more involved. We will eventually give a proof of it at the end of the course, as a
corollary of the pointwise ergodic theorem. So let us assume that EpX4

1 q ă 8.
Without loss of generality, we may assume that EpX1q “ 0. Indeed we may set

Yi “ Xi ´ EpX1q and apply the result to Yi instead (note that this is legitimate,
because the Yi’s will also be i.i.d. and will have a finite moment of order 4, because
EpY 4

1 q 6 EpY 2
1 q

2 6 EpX2
1 q

2 ă 8 by Cauchy-Schwarz.
Note further that X1 has a finite moment of order 1, 2 and 3, i.e. X1, X

2
1 and

X3
1 are integrable. This is because Ep|X1|q 6

a

EpX2
1 q by Cauchy-Schwarz, while

EpX2
1 q 6

a

EpX4
1 q and EpX3

1 q 6
a

EpX2
1 qEpX

4
1 q. (in fact it is not hard to prove

that finiteness of a moment of order k implies finiteness of all moments of order
6 k).

Then we set Sn “
řn

1 Xi and compute

EpS4
nq “

ÿ

i,j,k,l

EpXiXjXkXlq.

Exploiting independence of the Xi’s and the fact that EpXiq “ 0, we see that all
terms vanish, except of the terms X4

i and the cross terms X2
iX

2
j . This leads to

EpS4
nq “

n
ÿ

1

EpX4
i q ` 6

ÿ

iăj

EpX2
iX

2
j q
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By Cauchy-Schwarz again, we have EpX2
iX

2
j q 6

b

EpX4
i qEpX

4
j q “ EpX4

1 q. So

EpS4
nq 6 pn` 3npn´ 1qqEpX4

1 q

and hence
EppSn{nq

4q “ Op1{n2q,

which yields the convergence of the series
ÿ

n

EppSn{nq
4q “ Ep

ÿ

n

pSn{nq
4q.

Clearly this means that almost surely the series
ř

npSn{nq
4 converges, and hence

that almost surely Sn{n tends to 0 as desired. �

The word “strong” refers to the fact that the convergence holds almost surely
(i.e. P-almost everywhere). There is also a weak law of large numbers, in which the
convergence holds in a weaker sense (in probability) under a weaker assumption on
the sequence pXnqn, see the Example sheet.
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Lecture 13

11. Convergence of random variables

Given a sequence of random variables pXnqn there are several different and non
equivalent ways in which one may express the fact that they converge. The weakest
type of convergence is called the “weak convergence” or “convergence in law”.

Definition 11.1. A sequence of probability measures µn on pRd,BpRdqq is said to
converge weakly to a measure µ if for every continuous and bounded function f on

Rd we have:
µnpfq ÑnÑ`8 µpfq. (11.1)

Examples:

(1) µn “ δ1{n is a sequence of Dirac masses at 1{n. Clearly µn converges weakly
to δ0, because fp1{nq Ñ fp0q by continuity of f .

(2) µn “ N p0, σ2
nq a centered gaussian distribution with standard deviation

σn such that σn Ñ 0. Then µn Ñ δ0 as well, as follows from dominated
convergence:

µnpfq “

ż

fpxq expp´x2{2σnq
a

2πσ2
ndx “

ż

fpσnxq expp´x2{2q{
?

2πdxÑ fp0q.

(3) µn “
1
n

řn
i“1 δ in converges weakly to the uniform distribution on r0, 1s.

Definition 11.2. A sequence of Rd-valued random variables on a probability space
pΩ,F ,Pq is said to be converging to X

(a) almost surely (or a.s.) if for P-almost every ω P Ω we have Xnpωq Ñ Xpωq,
(b) in probability (or in measure) if for all ε ą 0, as nÑ `8,

Pp}Xn ´X} ą εq Ñ 0,

(c) in law (or in distribution) if µXn converges weakly to µX .

Recall that µX is the law of the random variable X, namely the Borel measure
on R defined by µXpBq “ PpX P Bq. Here the norm }x} is the Euclidean norm on
Rd (or any other norm for that matter). We now show that paq ñ pbq ñ pcq.

Proposition 11.3. If a sequence of random variables pXnqn converges almost
surely to X, then it converges in probability to X. If a sequence converges in
probability, then it converges in distribution.

Proof. paq ñ pbq. Write:

Pp}Xn ´X} ą εq “ Ep1}X´Xn}ąεq ÑnÑ`8 0

by Dominated Convergence.
For pbq ñ pcq, first note (recall Part IB) that every continuous and bounded

function f on Rd is uniformly continuous on compact subsets. Recall that this
means that for every ε ą 0 there is δ ą 0 such that if }x} 6 1{ε and }y ´ x} 6 δ,
then |fpxq ´ fpyq| 6 ε. So

|µXnpfq ´ µXpfq| “ |EpfpXnqq ´ EpfpXqq|

6 Ep1}Xn´X}6δ1|X|ă1{ε|fpXnq ´ fpXq|q ` 2}f}8Ep1|Xn´X|ěδ ` 1}X}ě1{εq

6 ε` 2}f}8pPp}X ´Xn} ě δq ` Pp}X} ě 1{εqq

where we have denoted as usual }f}8 :“ supxPR |fpxq|. Letting n tend to infinity,
this gives:

lim sup
n

|µXnpfq ´ µXpfq| 6 ε` 2}f}8Pp|X| ě 1{εq.
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Finally letting ε Ñ 0, we obtain the desired conclusion (weak convergence of µXn
towards µX .

�

Remark 11.4. When d “ 1, i.e. for real valued random variables, there is a
further characterization of convergence in law in terms of the distribution functions
FXpxq “ PpX 6 xq. Namely: Xn Ñ X in law if and only if FXnpxq Ñ FXpxq for
every x where FXpxq is continuous. See the 3rd Example Sheet.

Remark 11.5. To prove that a sequence of probability measures µn converges
weakly to a probability measure µ, it is enough to check p11.1q for smooth and
compactly supported functions f on Rd (exercise! or wait for the 4th ex. sheet).

Remark 11.6. The converse statements to those of the last proposition do not
hold. For an example showing that pcq does not imply pbq consider a sequence of
i.i.d. random variables Xn with common law µ and assume that µ is not a Dirac
mass. Clearly µXn converges to µX , because µXn “ µX “ µ for all n. However
Pp}Xn´X0} ą εq is independent of n ě 1 and non-zero if ε is small enough, because
µ is not concentrated on a single point.

To see an example showing that pbq does not imply paq consider the moving
bump examples already discussed: Ω “ p0, 1q, P Lebesgue, F “ Bp0, 1q and Xk,n “

1rk{n,pk`1q{ns for k “ 0, ..., n´1. This is an array of random variables, that you may
of course organize in a single sequence Ym so that Xk`1,n comes right after Xk,n

and X0,n`1 right after Xn´1,n. Then it is clear that for every ω P Ω the sequence
Ympωq does not converge (it will take the value 0 and the value 1 infinitely often).
But Pp|Ym| ą εq tends to 0 as m tends to infinity, because Pp|Xk,n| ą εq “ 1{n if
ε P p0, 1q.

Proposition 11.7. If Xn Ñ X in probability, then there is a subsequence tnkuk
such that

Xnk ÝÑkÑ`8 X

almost surely.

Proof. The assumption says that Pp}Xn ´X} ą εq Ñ 0 as n Ñ `8. So for every
k P N, there is nk such that Pp}Xnk ´X} ą 1{kq 6 1{2k. Hence

ÿ

k

Pp}Xnk ´X} ą 1{kq ă 8

and by the first Borel-Cantelli lemma we know that with probability 1

#tk P N, }Xnk ´X} ą 1{ku ă 8

Hence limkÑ`8 }Xnk ´X} “ 0. �

We have seen so far three types of convergence: in law, in probability and almost
sure. Here is a fourth:

Definition 11.8. A sequence of integrable random variables pXnqn is said to con-
verge to X in L1 if

Ep}Xn ´X}q ÑnÑ`8 0.

[Recall that a random variable Y is said to be integrable if Ep|Y |q ă 8. ]
This notion is stronger than convergence in probability, but it does not imply

almost sure convergence, nor is it implied by almost sure convergence. In fact we
will soon examine in detail the difference between convergence in probability and
convergence in L1, this will rely on the notion of uniform integrability.

Proposition 11.9. If Xn Ñ X in L1, then Xn Ñ X in probability.
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Proof. This is clear from the Markov inequality:

Pp}Xn ´X} ą εq 6
1

ε
Ep}Xn ´X}q.

�

Remark 11.10. The converse is not true: again take Ω “ p0, 1q, F “ Bp0, 1q and
P Lebesgue measure, and Xn :“ n1r0,1{ns. Clearly Xn Ñ 0 almost surely and hence
in probability, but EpXnq “ 1 for all n.

Note however that in this example Xn is not bounded. If Xn is bounded (i.e.
|Xn| 6 C for some C ą 0 independent of n), then convergence in probability implies
convergence in L1 (and hence is equivalent to it): indeed if not there would be ε ą 0
and a subsequence tnkuk such that Ep}Xnk ´X}q ą ε for all k. But one may then
pass to an even finer subsequence that convergences almost surely by Proposition
11.7. This would contradict the Dominated Convergence Theorem. We are now
going to define the right necessary and sufficient condition for us to be able to
upgrade convergence in probability (or almost sure convergence) to convergence in
L1.

Definition 11.11. A sequence of integrable (Rd-valued) random variables pXnqn

is said to be uniformly integrable (or U.I. for short) if

lim
MÑ`8

lim sup
nÑ`8

Ep}Xn}1}Xn}ąM q “ 0.

Examples

(1) If pXnqn is dominated in the sense that there is a random variable Y ě 0,
which is integrable, and such that

}Xn} 6 Y

for all n, then pXnqn is uniformly integrable. Indeed

Ep}Xn}1}Xn}ąM q 6 EpY 1YąM q

and the right hand side tends to 0 as M Ñ `8 by Dominated Convergence.
(2) Given p P r1,`8s, we say that a sequence pXnqn is bounded in Lp if

sup
n

Ep}Xn}
pq ă 8.

If pXnqn is bounded in Lp for some p ą 1, then pXnqn is uniformly inte-
grable. Indeed, we may write:

Ep}Xn}1}Xn}ąM q 6
1

Mp´1
Ep}Xn}

pq 6
1

Mp´1
sup
n

Ep}Xn}
pq

But p ą 1, so the right hand side tends to 0 as nÑ `8.
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The main reason for introducing the notion of uniform integrability lies in the
following theorem.

Theorem 11.12. Let pXnqn be a sequence of (Rd-valued) integrable random vari-
ables. Let X be another random variable. Then the following are equivalent:

(i) X is integrable and Xn Ñ X in L1,
(ii) pXnqn is uniformly integrable and Xn Ñ X in probability.

We will need:

Lemma 11.13. If Y is an integrable random variable and pXnqn is U.I., then so
is pXn ` Y qn.

Proof. This follows from the following calculation:

Ep}Xn ` Y }1}Xn`Y }ěM q 6 Epp}Xn} ` }Y }q1}Xn`Y }ěM p1}Xn}ěM{2 ` 1}Xn}ăM{2qq

6 Eppxn ` yq1xněM{2q ` Eppxn ` yq1yěM{21xnăM{2q

6 Eppxn ` yq1xněM{2q ` Ep2y1yěM{2q

6 Ep2xn1xněM{2q ` Ep3y1yěM{2q

where we wrote xn for }Xn} and y for }Y }. In the second line, we used the triangle
inequality so that 1}Xn`Y }ěM1}Xn}ăM{2 6 1}Y }ěM{21}Xn}ăM{2. �

Proof of Theorem 11.12. piq ñ piiq. We know that Xn Ñ X in probability, because
it converges in L1 (see Remark 11.9). But pXn ´ Xqn is clearly U.I., because it
tends to 0 in L1. By Lemma 11.13, we conclude that pXnqn is U.I.

piiq ñ piq Let us first check that X must be integrable. By Proposition 11.7,
there is a subsequence tnkuk such that Xnk Ñ X almost surely. By Fatou’s lemma
we get:

Ep}X}1}X}ěM q 6 lim inf
kÑ`8

Ep}Xnk}1}Xnk }ěM q,

which by assumption tends to 0 as M tends to `8 and is in particular finite. Hence
Ep}X}q 6 Ep}X}1}X}ěM q `M ă 8.

By Lemma 11.13 we have that pXn´Xqn is U.I. Now assume by way of contradic-
tion that Xn does not converge to X in L1. Then there is ε ą 0 and a subsequence
tnkuk such that Ep}Xnk ´ X}q ą ε for all k. By Proposition 11.7 (given that Xn

tends to X in probability), we may pass to an even finer subsequence and assume
wlog that Xnk Ñ X as k Ñ `8. Since pXn´Xqn is U.I. there is M ą 0 such that

lim sup
k

Ep}Xnk ´X}1}Xnk´X}ąM q ă ε

But by Dominated Convergence:

lim sup
k

Ep}Xnk ´X}1}Xnk´X}6M q “ 0

We conclude that

lim sup
k

Ep}Xnk ´X}q ă ε,

which is a contradiction.
�
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12. Lp spaces

We begin with three inequalities of fundamental importance in Analysis.

p1q Jensen’s inequality

Proposition 12.1 (Jensen’s inequality). Let pΩ,A,Pq be a probability space and
I an open interval of R and X : Ω Ñ I be a random variable. Assume that X is
integrable and φ : I Ñ R is convex. Then

EpφpXqq ě φpEpXqq.

Recall:

Definition 12.2. A function φ : I Ñ R is said to be convex if @x, y P I and for all
t P r0, 1s one has:

φptx` p1´ tqyq 6 tφpxq ` p1´ tqφpyq.

Remark 12.3. EpXq P I clearly and we will show that EpφpXq´q ă 8, where φ´ is
the negative part of φ. So EpφpXqq is always well defined as EpφpXq`q´EpφpXq´q
even though φpXq may not be integrable.

In order to prove Jensen’s inequality we require:

Lemma 12.4. A function φ : I Ñ R is convex if and only if

φ “ sup
`PF

`

where F is some family of affine linear forms x ÞÑ ax` b (for various a, b P R).

Proof. The “if” part is clear, because each ` is convex, and hence so is their
supremum. For the “only if” part note that for each x0 P I we need to find
`x0
pxq “ θx0

px ´ x0q ` φpx0q with θx0
P R such that φpxq ě `x0

pxq for all x.
Observe that since φ is convex, for all x, y with x ă x0 ă y we have

φpx0q ´ φpxq

x0 ´ x
6
φpyq ´ φpx0q

y ´ x0
,

indeed this is equivalent to φpx0q 6 tφpxq` p1´ tqφpyq for t “ px0´ xq{py´ xq. So
there exists θ P R such that for all x, y with x ă x0 ă y we have:

φpx0q ´ φpxq

x0 ´ x
6 θ 6

φpyq ´ φpx0q

y ´ x0
.

So just set `x0pxq “ θpx´ x0q ` φpx0q and get φpxq ě `x0pxq. �

We can now prove Jensen’s inequality:

Proof of Proposition 12.1. Write

φpXq “ sup
`PF

`pXq

and for all ` P F ,

EpφpXqq ě Ep`pXqq “ `pEpXqq

So
EpφpXqq ě φpEpXqq

as desired.
Besides, ´φpxq “ inf`PF ´`pxq, so

p´φpXqq` 6 | ´ `pXq| 6 |`pXq| 6 a|X| ` b,

so φpXq´ is integrable.
�
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Definition 12.5 (Lp-norm). Let pX,A, µq be a measure space and f : X Ñ R a
measurable map. For p P r1,`8q, we set

}f}p :“
“

ż

X

|f |pdµ
‰1{p

,

while for p “ 8

}f}8 “ essup|f | :“ inftt ě 0, |fpxq| 6 t µ´ a.e.u.

Example: if pX,A, µq “ pR,L,mq and f “ 1 ` 1x“0, then supxPX |fpxq| “ 2, but
}f}8 “ 1.

Remark 12.6. Note that for any measurable f , there is another measurable func-
tion g such that f “ g µ-a.e. and }f}8 “ supxPX |gpxq|. Indeed take gpxq “
fpxq1|fpxq|6}f}8 .

p2q Minkowski’s inequality

Proposition 12.7 (Minkowski’s inequality). In this setting, for any p P r1,`8s
we have:

}f ` g}p 6 }f}p ` }g}p.

Proof. The case when p “ `8 is obvious. So assume p is finite. Note that the
inequality is equivalent to

}t
f

}f}p
` p1´ tq

g

}g}p
}p 6 1

where

t :“
}f}p

}f}p ` }g}p
.

This means that we need to show that for every t P r0, 1s and every measurable
functions F and G on X with }F }p “ }G}p “ 1 we have:

}tF ` p1´ tqG}p 6 1

or in other words
ż

X

|tF ` p1´ tqG|pdµ 6 1.

But x ÞÑ xp is convex in r0,`8q if p ě 1. So we have:

|tF ` p1´ tqG|p 6 |t|F | ` p1´ tq|G|qp 6 t|F |p ` p1´ tq|G|p

Integrating over X, we obtained as desired:
ż

X

|tF ` p1´ tqG|pdµ 6 1.

�

p3q Hölder’s inequality
Let p, q P r1,`8s. Assume that

1

p
`

1

q
“ 1.
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Proposition 12.8 (Hölder’s inequality). Let pX,A, µq be a measure space and let
f, g be measurable functions. Then

ż

X

|fg|dµ 6 }f}p ¨ }g}q.

Moreover, when p and q are finite, if equality holds (and the terms are finite), then
there is pα, βq ‰ p0, 0q such that α|f |p “ β|g|q µ-amost everywhere.

The case when either p or q is infinite is obvious, by the positivity property of
the µ-integral: |fg| 6 }f}8|g| holds µ-a.e., hence µp|fg|q 6 }f}8µp|g|q. So wlog we
can now assume that p and q are finite. For the proof, we need:

Lemma 12.9 (Young’s inequality for products). Let a, b ě 0, then

ab 6
ap

p
`
bq

q
,

with equality if and only if ap “ bq.

Proof. the function ´ log is strictly convex, so

´ logp
ap

p
`
bq

q
q 6

1

p
p´ logqpapq `

1

q
p´ logqpbqq “ ´ log ab,

with equality if and only if ap “ bq. �

Proof of Proposition 12.8. Without loss of generality we may assume that
ş

X
|f |pdµ ‰

0 and that
ş

X
|g|qdµ ‰ 0. Otherwise either f or g is zero µ-almost everywhere and

the inequality is trivial. Similarly, we may further assume that both }f}p and }g}q
are finite. By further multiplying f and g by a scalar multiple, we may assume
that }f}p “ 1 and }g}q “ 1. Now we are in a position to apply Young’s inequality
for products (previous lemma):

|fg| 6
|f |p

p
`
|g|q

q
. (12.1)

And integrating, we get:
ż

X

|fg|dµ 6
1

p
`

1

q
“ 1

as desired. To see the equality case, note that it implies that p12.1q holds µ-almost
everywhere, and thus that |f |p “ |g|q almost everywhere.

�

Remark 12.10. (1) When p “ q “ 2 Hölder’s inequality is also known as
Cauchy-Schwarz (which we have already seen for random variables, but it
also holds when µ is not a probability measure).

(2) Jensen’s inequality implies that if X is a random variable, then the function

p ÞÑ Ep|X|pq1{p

is non-decreasing. Indeed set φpxq “ xq{p, which is convex if q ą p and
apply Jensen’s inequality to it.

Definition 12.11. We set LppX,A, µq :“ tf : X Ñ R measurable, }f}p ă 8u.

Note that LppX,A, µq is a vector space (this follows from Minkowski’s inequality
when p is finite).

Let us introduce the following relation among measurable functions on a measure
space pX,A, µq. We will write f ” g is fpxq “ gpxq holds µ-almost everywhere.

Lemma 12.12. The relation ” is an equivalence relation, which is stable under
addition and multiplication.
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Proof. Clearly if f ” g and g ” h, then f ” h, so the relation in transitive and
hence an equivalence relation. It is also clear that if f 1 ” g1, then f ` f 1 ” g ` g1

and ff 1 ” gg1. �

Definition 12.13. The Lp-space associated to the measure space pX,A, µq is the
quotient space LppX,A, µq mod ”.

In other words it is the set of equivalence classes rf s (up to µ-measure zero) of
functions f with finite Lp norm. The main reason why we pass to this quotient
is that on the quotient the Lp norm becomes a genuinue norm. The value }f}p
depends only on the class rf s of the function and not on the function itself, i.e. if
f ” g, then }f}p “ }g}p. So it makes sense to talk about }rf s}p and we have that
}rf s}p “ 0 implies rf s “ 0. Thus we have:

Proposition 12.14 (Completeness of Lp-spaces). For p P r1,`8s the norm } ¨ }p

turns LppX,A, µq into a normed vector space. Moreover it is a complete normed
vector space (a.k.a. a Banach space).

Recall that complete means that Cauchy sequences converge.

Proof. If f ” g, then }f}p “ }g}p, to } ¨ }p descends to Lp.
If }f}p “ 0, then f ” 0 by the properties of the µ-integral.
The triangle inequality holds }f ` g}p 6 }f}p ` }g}p, by Minkowski’s inequality

when p is finite and clearly when p “ `8. Also }λf}p “ |λ|}f}p for all λ P R.
So all this makes Lp a normed vector space. It remains to show completeness.

We first handle the case when p is finite. So suppose prfnsqn is a Cauchy sequence
in Lp. This means that for all ε ą 0 there is n0 ą 0 such that for all n,m ą n0 we
have }fn ´ fm}p ă ε. We set ε “ 2´k for an arbitrary integer k ě 0. Then there is
nk such that for all k ě 0

}fnk`1
´ fnk} 6 2´k.

Let

SK “
K
ÿ

k“1

|fnk`1
´ fnk |.

Then

}SK}p 6
K
ÿ

k“1

2´k 6 1,

by Minkowski’s inequality. So by Monotone Convergence we get
ż

X

|SKpxq|
pdµpxq ÑKÑ`8

ż

X

|S8|
pdµ

and so S8 P Lp and for µ-a.e. x we have S8pxq ă 8. This means that

`8
ÿ

1

|fnk`1
pxq ´ fnkpxq| ă 8

and hence that pfnkpxqqk is itself a Cauchy sequence in R. But R is complete, so
limkÑ`8 fnkpxq exists in R. Call it fpxq. This was defined only on those x such
that S8pxq ă 8. On the complement of this set (which is of µ-measure 0) we can
set fpxq “ 0. Then

}fn ´ f}p 6 lim inf
kÑ`8

}fn ´ fnk}p 6 ε

by Fatou’s lemma. This holds for all n ě n0. So we have shown that

lim
n
}fn ´ f}p “ 0.

Finally the case when p “ `8 can be handled in a similar way, except that in
place of Fatou’s lemma we use the following:
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Fact: if fn Ñ f µ-a.e., then }f}8 6 lim infn }fn}8.
Proof: Let t ą lim infn }fn}. Then there exists an increasing subsequence nk with
}fnk}8 6 t. In other words for all k, µ-a.e. |fnkpxq| 6 t. Swapping the order
(@kµ-a.e. versus µ-a.e. @k, which is allowed by σ-subadditivity of the measure µ),
this implies that µ-a.e. for all k we have |fnkpxq| 6 t. And hence that |fpxq| 6 t.

�

From now on, we will often abuse notation and stop distinguishing between an
element of Lp and a representative of that element, namely a function in Lp whose
equivalence class is that element. This should not cause confusion, but we should
always keep in mind that elements in Lp are equivalence classes.

The next proposition is a useful technical device when dealing with Lp-spaces,
when p is finite (it fails when p “ `8).

Proposition 12.15 (Approximation by simple functions). Let p P r1,8q and
pX,A, µq a measure space. Let V be the linear span of simple functions on pX,Aq.
Then V X Lp is dense in Lp.

in other words: for every ε ą 0 and every f P LppX,A, µq there is g “ g` ´ g´

with g` and g´ simple functions on pX,Aq such that g P Lp and }f ´ g}p ă ε.

Proof. Note that g`, g´ 6 |g|. Hence if g P Lp, then g` and g´ belong to Lp.
Writing f “ f` ´ f´ and using Minkowski’s inequality it is enough to assume
that f ě 0. We’ve shown (cf. Lemma 7.6) that there are simple functions gn with
0 6 gn 6 f and gnpxq Ñ fpxq for every x P X. But we have

|gn ´ f |
p 6 p2fqp

and the right hand side is integrable, so we may apply Lebesgue’s Dominated Con-
vergence Theorem to conclude that

ż

X

|gn ´ f |
pdµÑ 0.

�

Remark 12.16. When pX,A, µq “ pRd,L,mq, then smooth compactly supported
functions C8c pR

dq form a dense subspace in Lp (see the 3rd example sheet).

Remark 12.17. (1) If µpXq ă 8, then Lp
1

Ă Lp if p1 ě p (we have already
seen how this follows from Jensen’s inequality),

(2) if X is discrete and countable (i.e. A “ 2X), then Lp
1

Ă Lp for p1 6 p,
(3) in general (e.g. when pX,Aq “ pRd,Lq) these inclusions do not hold (in

neither direction).



PROBABILITY AND MEASURE 2019-2020 53

Lecture 16

13. Hilbert spaces and L2-methods

Let V be a complex vector space (possibly infinite dimensional).

Definition 13.1 (inner product). A Hermitian inner product on V is a map:

V ˆ V Ñ C

px, yq ÞÑ xx, yy

with the following properties

(i) xαx` βy, zy “ αxx, zy ` βxy, zy for all α, β P C and all x, y, z P V ,

(ii) xy, xy “ xx, yy for all x, y P V ,
(iii) for all x P V , xx, xy ě 0 with equality if and only if x “ 0.

Axioms piq and piiq make the inner product a sesquilinear form (“sesqui” means
one-and-a-half, it is linear in the first variable and skew-linear in the second, that
is xx, αyy “ αxx, yy, where α is the complex conjugate). Note that piiq implies that
xx, xy is always real.

For real vector spaces, one has the same definition, but of course in that case piq
and piiq simply mean that the inner product is a bilinear symmetric form, and the
inner product is then called a Euclidean inner product.

In what follows V is a complex (resp. real) vector space endowed with a Her-
mitian (resp. Euclidean) inner product. For each x P V we set }x} :“ xx, xy.

Lemma 13.2. For any α P C and x, y P V we have:

(a) }αx} “ |α|}x},
(b) (Cauchy-Schwarz inequality) |xx, yy| 6 }x} ¨ }y},
(c) (triangle inequality) }x` y} 6 }x} ` }y},
(d) (Parallelogram identity) }x` y}2 ` }x´ y}2 “ 2p}x}2 ` }y}2q.

Proof. For (a) note that }αx}2 “ xαx, αxy “ |α|2}x}2. The proof of (b) is as follows:
for every t P R we have:

xx` ty, x` tyy “ t2}y}2 ` }x}2 ` 2 Rexx, yy ě 0,

this is a quadratic polynomial in t that does not change sign: its discriminant must
henceforth be non-positive, i.e. ∆ 6 0. But

∆ “ 4pRepxx, yyqq2 ´ 4}x}2 ¨ }y}2

so we get

|Repxx, yyq| 6 }x} ¨ }y}.

But for every θ P R we have xeiθx, yy “ eiθxx, yy, so in particular, given x, y there
always exists some θ P R such that xeiθx, yy “ |xx, yy|. We conclude that

|xx, yy| “ |Repxeiθx, yyq| 6 }eiθx} ¨ }y} “ }x} ¨ }y}

as desired. To prove (c) apply (b) as follows:

}x` y}2 6 }x}2 ` }y}2 ` 2 Repxx, yyq 6 p}x} ` }y}q2.

The proof of (d) is straighforward: simply expand the inner product of the sum
and of the difference. �

Corollary 13.3. pV, } ¨ }q is a normed vector space.
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Recall that a normed vector space is simply a (real or complex) vector space
endowed with a norm, i.e. a map x ÞÑ }x} from V to r0,`8q satisfying axioms (a)
and (c) above, and such that }x} “ 0 if and only if x “ 0.

A normed vector space is in particular a metric space, with the distance function
defined as }x ´ y}. Recall further that a metric space is said to be complete if all
Cauchy sequences converge.

Definition 13.4. A hermitian (resp. Euclidean) vector space V is said to be a
Hilbert space if pV, } ¨ }q is complete.

Example: Let V “ L2pX,A, µq with inner product

xf, gy “

ż

X

fgdµ.

This is well-defined, because as we have already seen (Cauchy-Schwarz) if both
f, g are in L2, then fg is µ-integrable. It is plain to check that V then becomes
a Hermitian vector space with this inner product. And we have shown previously
that V is complete. So V is a Hilbert space. In fact it is the archetypal Hilbert
space, as it can be shown that every Hilbert space is isomorphic to an L2 space.

Proposition 13.5 (orthogonal projection on closed convex sets). Let H be a Hilbert
space and C Ă H a closed convex subset. Then there is a well-defined orthogonal
projection to C. This means that for every x P H there is a unique y P C such that

}x´ y} “ inft}x´ c}, c P Cup“: dpx, Cqq.

We call y the orthogonal projection of x onto C.

Proof. Pick cn P C such that }x´ cn} Ñ dpx, Cq. By the parallelogram identity we
have:

}
x´ cn

2
`
x´ cm

2
}2 ` }

x´ cn
2

´
x´ cm

2
}2 “ 2p

}x´ cn}
2

4
`
}x´ cm}

2

4
q (13.1)

in other words:

}x´
cn ` cm

2
}2 ` }

cn ´ cm
2

}2 “
1

2
p}x´ cn}

2 ` }x´ cm}
2q.

Since C is convex, cn`cm2 P C, so we get:

}x´
cn ` cm

2
} > dpx, Cq

and it follows that }cn ´ cm} Ñ 0 as n and m tend to infinity. Hence the sequence
pcnqn is a Cauchy sequence in H.

But we have assumed that H is complete. We conclude that the sequence pcnqn
converges to a point y P H . Since C is closed by assumption, we must have y P C
and dpx, Cq “ }x´ y}.

This shows the existence of y. The uniqueness follows directly from p13.1q re-
placing cn and cm by two minimizing elements. �

Corollary 13.6. If V 6 H is a closed vector subspace, then H “ V ‘ V K, where
V K :“ tx P H, xx, vy “ 0@v P V u.

Note: even if V is not closed, V K is always a closed subspace. Indeed if xn Ñ x,
then xxn, vy Ñ xx, vy, so

|xxn, vy ´ xx, vy| 6 }xn ´ x} ¨ }v}

and x P V K if xn P V
K for all n.
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Proof. Note that V X V K “ 0, because xx, xy “ 0 implies x “ 0.
Let now x P H and y its projection to V as given by Proposition 13.5 Claim:

x´ y P V K. Indeed for all z P V we have }x´ y ´ z} ě }x´ y} as y ` z P V . So

}x´ y}2 ` }z}2 ´ 2 Rexx´ y, zy ě }x´ y}2

and hence
2 Rexx´ y, zy 6 }z}2

for all z P V . In particular for all t ą 0,

2 Rexx´ y, tzy 6 t2}z}2,

which letting tÑ 0 yields:
Rexx´ y, zy 6 0.

But this holds for all z P V so in particular for ´z, and hence Rexx ´ y, zy “ 0.
Changing z into eiθ for a suitable angle θ P R, we finally get xx´ y, zy “ 0. Hence
x´ y P V K. �

Let H be a complex Hilbert space.

Definition 13.7. A linear form ` : HÑ C is called bounded if Dc ą 0 such that

|`pxq| 6 c}x}

for all x P H.

Remark: a linear form is bounded if and only if it is continuous (an easy exercise!).
Of course if H is a real Hilbert space, then linear forms are assumed to be R-linear
only and take values in R.

Theorem 13.8 (Riesz representation theorem for Hilbert spaces). Let H be a
Hilbert space and ` a bounded linear form on H. Then there is a unique vector
v0 P H such that

`pxq “ xx, v0y

for all x P H.

Proof. Uniqueness is clear, because if v0 and v10 are such, then by linearity of the
inner product xx, v0 ´ v10y “ 0 for all x P H and in particular for x “ v0 ´ v10,
which yields v0 ´ v10 “ 0. We now prove the existence part. By the last corollary
we have H “ ker ` ‘ pker `qK, because ker ` is a closed subspace of H (since ` is
continuous). We may assume that ` is not identically zero (otherwise set v0 “ 0).
Pick x0 P pker `qKzt0u. Then `px0q ‰ 0 and

Claim: pker `qK “ Cx0.

Indeed if x P pker `qK, then `pxq “ α`px0q with α :“ `pxq
`px0q

. So `px ´ αx0q “ 0,

that is x´ αx0 P ker `X pker `qK “ t0u. Hence x “ αx0.

Now write:

`pxq ´ xx, x0y
`px0q

}x0}2
“ `pxq ´ xx, v0y,

where v0 :“ x0
`px0q

}x0}2
. This linear form vanishes on ker ` and on x0, so also on

pker `qK by the Claim above. Hence on all of H.
�
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Lecture 17

14. Conditional expectation

We now define a fundamental concept in probability theory, that of conditional
expectation. Again the key to the proofs will be the existence of an orthogonal
projection in Hilbert space as established in the previous lectures.

Proposition-Definition 14.1 (Conditional expectation). Let pΩ,F ,Pq be a prob-
ability space and G Ă F be a σ-subalgebra. Let X be a real valued integrable random
variable. Then there exists Y a G-measurable and integrable random variable such
that

Ep1AXq “ Ep1AY q (14.1)

for all A P G. Moreover Y is unique in the sense that if Y 1 is as above, then
Y “ Y 1 almost surely. The random variable Y is called the conditional expectation
of X with respect to G and is denoted by

Y “ EpX|Gq.

Note that EpX|Gq is a (G-measurable) random variable (while EpXq was just a
number). Intuitively EpX|Gq is the average value of X “knowing” G, that is given
the information provided by G. A good way to understand the idea of conditional
expectation is to consider the special case when G is the Boolean algebra generated
by a partition of the universe Ω into finitely many subsets from F , namely Ω “
ŮN

1 Xi. Then EpX|Gq is G-measurable, so it is constant on each Xi. On Xi it
equals the average value of Xpωq knowing that ω belongs to Xi, that is

Y pωq “ EpX|Gqpωq “ 1

PpXiq

ż

Xpωq1XipωqdPpωq.

Indeed it is very easy to check that p14.1q does hold for this Y and for any A P G,
because A is then a finite union of Xi’s.

Proof. (existence) We first prove the existence of conditional expectation assuming
that X has a finite moment of order 2. In that case Y will be the orthogonal pro-
jection of X onto the closed subspace L2pΩ,G,Pq of the Hilbert space L2pΩ,G,Pq.
The fact that L2pΩ,G,Pq is closed follows from its completeness (this is an exercise
in Exple Sheet no 4). Recall that on this Hilbert space the inner product between
say W and Z is given by EpWZq. It is then clear that Ep1AY q “ Ep1AXq.

Now assume that X is integrable and non-negative. Then we can truncate and
consider Xn “ X1X6n. Then Xn P L2 and we can let Yn the orthogonal projection
of Xn onto L2pΩ,G,Pq. It is clear that Yn`1 ě Yn ě 0 almost surely (indeed, for
example if we let A be the event where Yn`1 ă Yn, then A is G-measurable, and we
get EppYn`1 ´ Ynq1Aq “ EppXn`1 ´Xnq1Aq ě 0, which forces pYn`1 ´ Ynq1A “ 0
almost surely, or in other words PpAq “ 0). So we can denote by Y “ limn Yn and
observe that my Monotone Convergence EpYn1Aq Ñ EpY 1Aq and hence EpY 1Aq “
EpX1Aq. This shows the existence in this case.

In the general case, we may write X “ X` ´X´ and set Y “ Y ` ´ Y ´, where
Y ` is a conditional expectation for X` and Y ´ for X´.

(uniqueness) If Y1 and Y2 are two candidates, then Ep1ApY1 ´ Y2qq “ 0 for all
A P G. But this forces Y1 “ Y2 almost surely (this was an exercise in Example sheet
no 2.). �

We now list the key properties of conditional expectation:

(1) (linearity) if α, β P R and X,Y are random variables then almost surely

EpαX ` βY |Gq “ αEpX|Gq ` βEpY |Gq,
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(2) if X is already G-measurable, then EpX|Gq “ X a.s.
(3) (positivity) if X ě 0 a.s., then EpX|Gq ě 0 a.s.,
(4) if H Ă G is a sub-σ-algebra, then a.s.

EpEpX|Gq|Hq “ EpX|Hq,

(5) if Z is a G-measurable bounded random variable, then a.s.

EpXZ|Gq “ Z ¨ EpX|Gq,

(6) (independence) if X is independent from G, then EpX|Gq “ EpXq a.s.,
(7) the Monotone Convergence Theorem, Fatou’s lemma and the Dominated

Convergence Theorem continue to hold for Ep¨|Gq. (for example the ana-
logue of the MCT states that if Xn`1 ě Xn ě 0 and Xn converges almost
surely to X, then EpXn|Gq converges almost surely to EpX|Gq, etc.)

Proof. The proofs are a simple application of Proposition 14.1. One uses uniqueness
and the defining property p14.1q to check that the properties hold almost surely.
For example to prove (3), set A “ tω P Ω, Y pωq ă 0u, where Y “ EpX|Gq; then
Ep1AY q “ Ep1AXq ě 0, which forces 1AY “ 0 a.s., and hence PpAq “ 0. Item (6)
follows from the fact that EpX1Aq “ EpXqEp1Aq as X and 1A will be independent
if A P G. And the same for (7) : for A P G write Ep1AXnq “ Ep1AEpXn|Gqq,
then use the ordinary MCT on both sides to conclude that Ep1AXnq converges to
Ep1AXq and that Ep1AEpXn|Gqq converges to Ep1A limn EpXn|Gqq. The uniqueness
in Propostion 14.1 then implies that limn EpXn|Gq must be (almost surely) the
conditional expectation EpX|Gq. Fatou’s lemma and the DCT then follow from the
MCT by the same argument as in their original proof. �

15. The Fourier transform on Rd

We now take a break from probability theory to go back to analysis on Rd and
present a fundamental tool: the Fourier transform on Rd. This tool will be crucial
to establish later one of the corner stones of probability theory, namely the Central
Limit theorem. It will also be crucial when discussing the gaussian distribution and
gaussian vectors.

Recall that BpRdq is the σ-algebra of Borel subsets of Rd. We denote by dx the
Lebesgue measure on Rd.

Definition 15.1. Let f P L1pRd,BpRdq, dxq and let u P Rd. We set

pfpuq :“

ż

Rd
fpxqeixu,xydx.

where xu, xy “
ř

i uixi is the standard Euclidean inner product. The function pf is
called the Fourier transform of f .

Proposition 15.2. (a) | pfpuq| 6 }f}1,

(b) u ÞÑ pfpuq is continuous.

Proof. a) is clear, b) follows from directly from the Dominated Convergence Theo-
rem: if un Ñ u, then the functions x ÞÑ fpxqeiunx converge pointwise to fpxqeiux

and are dominated by the integrable function f . �

Definition 15.3. Similarly if µ is a finite Borel measure on Rd and u P Rd we set

pµpuq “

ż

Rd
eixu,xydµpxq.

We call it the characteristic function of µ.
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Again |pµpuq| 6 µpRdq and u ÞÑ pµpuq is continuous for the same reasons.

Example: Let µ “ N p0, 1q be a normalized (i.e. mean 0, standard deviation 1)
gaussian measure, so that dµpxq “ gpxqdx, where

gpxq :“
1
?

2π
expp´

x2

2
q.

Claim: pgpuq “ pµpuq “ expp´u2

2 q “
?

2πgpuq.

Proof. We can write

pgpuq “

ż

R
eiuxe´

x2

2
dx
?

2π
.

Differentiating (under the integral sign, which is legitimate by Corollary 7.15) with
respect to u and integrating by parts, we obtain:

d

du
pgpuq “

ż

ixeiuxe´x
2
{2 dx
?

2π

“ ´

ż

ieiuxg1pxqdx

“

ż

i
d

dx
peiuxqgpxqdx

“ ´u

ż

eiuxgpxqdx “ ´upgpuq

so
d

du
ppgpuqeu

2
{2q “ p

d

du
pgqeu

2
{2 ` upgeu

2
{2 “ 0,

which implies that

pgpuq “ pgp0qe´u
2
{2.

But

pgp0q “

ż

gpxqdx “ 1,

so
pgpuq “ e´u

2
{2.

�

This shows that the gaussian is self-dual, namely it is equal to its Fourier trans-
form up to a scaling factor: pg “

?
2πg. It can be shown that this property charac-

terizes the gaussian distribution among all Borel probability measures on R.

Example: If µ “ N p0, Idq is an isotropic multivariate gaussian (here Id is the dˆ d
identity matrix, we will explain the rationale for this notation in a few lectures), in
other words:

dµ “ gpx1q ¨ . . . ¨ gpxdqdx1 . . . dxd “ Gpxqdx,

where

Gpxq “
1

p2πqd{2
expp´

1

2
px21 ` . . .` x

2
dqq. (15.1)

Then

pGpuq “

ż

Rd
Gpxqeixu,xydx1 . . . dxd “

d
ź

1

ż

R
gpxiqe

iuxidxi “ expp´
1

2
}u}2q

where }u}2 “ u21 ` . . .` u
2
d.
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Lecture 18

Theorem 15.4 (Fourier Inversion Formula). (1) If µ if a finite Borel measure
on Rd such that pµ P L1pRdq, then µ has a continuous density φpxq with
respect to Lebesgue measure, i.e. dµ “ φpxqdx, and

φpxq “
1

p2πqd
p

pµp´xq.

(2) If f P L1pRdq is such that pf P L1pRdq, then

fpxq “
1

p2πqd
p

pfp´xq

for Lebesgue almost every x.

Note that x ÞÑ 1
p2πqd

p

pfp´xq is a continuous function, being the Fourier transform

of an L1 function.

Interpretation: this theorem says that the function f can be decomposed as
a weighted sum, or integral, of “Fourier modes”, i.e. the oscillatory functions
x ÞÑ eixu,xy,

fpxq “

ż

Rd

pfpuqe´ixu,xy
du

p2πqd

and the “weights” pfpuq are called the Fourier coefficients of f . The functions
χupxq :“ e´ixu,xy are called modes in physics and characters in mathematics. Their
defining property is that they are group homomorphisms from pRd,`q to the circle
group tz P C, |z| “ 1u, namely χupx` yq “ χupxqχupyq for all x, y P Rd.

Proof. (1) Without loss of generality, we may assume that µ is a probability measure
(replace µ by µ{µpRdq). And that µ is the law of some random variable X on a
probability space pΩ,F ,Pq. The main idea of the proof is to use gaussians to
“mollify” X (that is replace X by the “smoother” distribution X ` σN for an
independent gaussian N and let σ tend to 0) and exploit the self-duality property of
the gaussian distribution. To achieve this, let N be an independent random variable
on pΩ,F ,Pq, which is assumed to be a normalized standard gaussian N p0, Idq with
density Gpxq (defined in the Example above)

We need to show that for every A is a bounded Borel subsets of Rd, we have:

PpX P Aq “

ż

Rd
1Apzqφpzqdz.

Let h :“ 1A and σ ą 0. By the Dominated Convergence Theorem we have:

lim
σÑ0

EphpX ` σNqq “ EphpXqq. (15.2)

On the other hand:

EphpX`σNqq “ Ep
ż

hpX`σxqGpxqdxq “ Ep
ż ż

hpX`σxqGpuqe´ixu,xy
du

p2πqd{2
dxq
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because Gpxq “
ş

Rd Gpuqe
´ixu,xy du

p2πqd{2
as follows from the computation in the

above Example. Then setting z “ X ` σx we get

EphpX ` σNqq “ E
“

ż ż

hpzqGpuqe´ix
u
σ ,z´Xy

du

p2πσ2qd{2
dz
‰

“

ż ż

hpzqGpuqeix
u
σ ,zy

xµXp´
u

σ
q

du

p2πσ2qd{2
dz

“

ż ż

hpzqGpσuqe´ixu,zyxµXpuq
du

p2πqd{2
dz.

We have used Fubini to interchange E and
ş ş

at the second line. This was legit-

imate because hpzqGpuqe´ix
u
σ ,z´Xy is an integrable (w.r.t. dz b dub dP) function.

Now the integrand is dominated, because

|hpzqGpσuqe´ixu,zyxµXpuq| 6
1

p2πqd{2
|xµXpuq|

which is integrable by assumption. So we may apply the Dominated Convergence
Theorem: letting σ Ñ 0 and noting that Gp0q “ 1{p2πqd{2, we conclude that:

lim
σÑ0

EphpX ` σNqq “
ż ż

hpzqe´ixu,zyxµXpuq
du

p2πqd
dz “

ż

hpzqxxµXp´zq
dz

p2πqd
.

Comparing this to p15.2q ends the proof.

(2) The proof of part (2) is entirely similar: write f “ f` ´ f´ and fpxqdx “
a dµXpxq ´ b dµY pxq for some a, b ě 0 and some independent Rd-valued random
variables X,Y . So that a dµX “ f`pxqdx and b dµY pxq “ f´pxqdx. One needs to
show that

ż

hpzqfpzqdz “

ż

hpzq
1

p2πqd
p

pfp´zqdz

for every bounded measurable h ě 0. Perform the same proof as in (1) writing
ż

hpzqfpzqdz “ aEphpXqq ´ bEphpY qq,

then replacing X by X ` σN and Y by Y ` σN , and compute

lim
σÑ0

aEphpX ` σNqq ´ bEphpY ` σNqq

in two ways. At the end, when applying the Dominated Convergence theorem, use

the integrability of pf “ axµX ´ bxµY in place of that of xµX (note that there is no
reason for the latter to be integrable). �

Remark 15.5. We see from the above theorem the importance of the assumption
pf P L1. How can one ensure that this is the case in practice? Well, it is enough that
f has enough integrable derivatives. In the case of univariate functions a simple
sufficient condition for this is to require that f be C2 and f ,f 1 and f2 be integrable
(i.e. in L1pRq, we suppose here that we are over R, but a similar condition can be

given over Rd). To see this, note that if f is C1 and f 1 P L1, then pfpuq “ i
u
pf 1puq.

Indeed, integrating by parts, we have:

pfpuq “

ż

fpxqeiuxdx “
1

iu

ż

fpxq
d

dx
peiuxqdx “ ´

1

iu

ż

f 1pxqeiuxdx.

It follows that

| pfpuq| 6
1

|u|
}f 1}1.
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Iterating this fact, we conlude that is f ,f 1 and f2 are in L1, then pfpuq “ ´ 1
u2
xf2puq,

to

| pfpuq| 6
1

u2
}f2}1

and hence pf P L1pRq.

We now pass to an important operation one can make on functions or measures:

Definition 15.6 (Convolution product). Given two Borel measures on Rd, say µ
and ν, we may define their convolution µ ˚ ν as the image of the product measure
µb ν under the addition law on pRd,`q, namely:

µ ˚ ν “ Φ˚pµb νq

where

Φ : Rd ˆ Rd Ñ Rd

px, yq ÞÑ x` y

Example: If µ “ µX and ν “ µY are the laws of two independent Rd-valued random
variables X and Y , then µ ˚ ν is the law of the random variable X ` Y , indeed:

PpX ` Y P Aq “ µX b µY pΦ
´1pAqq.

Definition 15.7. Similarly, if f and g are in L1pRdq, we may define

f ˚ gpxq :“

ż

Rd
fpx´ tqgptqdt.

This is well-defined for (Lebesgue) almost every x, because the map

px, tq ÞÑ fpx´ tqgptq

belongs to L1pRd ˆ Rdq, since
ż ż

|fpx´ tqgptq|dtdx “ }f}1}g}1 ă 8.

Therefore, by Fubini, f ˚ gpxq is well-defined and is finite for m-almost every x.
Also

}f ˚ g}1 “

ż

|f ˚ gpxq|dx 6 }f}1}g}1.

One says that L1pRdq endowed with the convolution product ˚ is a Banach algebra.

Remark 15.8. If µ, ν have densities with respect to Lebesgue, that is µ “ fdx
and ν “ gdx for some integrable densities f and g, then µ ˚ ν also has a density
with respect to Lebesgue equal to f ˚ g.

Proposition 15.9 (Gaussian approximation). If f P LppRdq and p P r1,`8q, then

lim
σÑ0

}f ˚Gσ ´ f}p “ 0,

where Gσpxq “
1

p2πσ2qd{2
expp´ }x}

2

2σ2 q is the density of a gaussian distribution N p0, σ2Idq.

To prove this, we need a lemma:

Lemma 15.10 (Continuity of translation in Lp). Let f P LppRdq and p P r1,`8q,
then

lim
tÑ0

}τtpfq ´ f}p “ 0,

where τtpfqpxq “ fpx` tq is the “translation” by t P Rd.

Proof. This is an exercise in the 4th Example sheet. Use the density of CcpRdq in
Lp (which itself follows from Ex. 13 in the 3rd Example sheet). �
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Proof of Proposition 15.9. We can write

f ˚Gσpxq ´ fpxq “

ż

Gσptqpfpx´ tq ´ fpxqqdt “ Epfpx´ σNq ´ fpxqq

where N is a normalized gaussian N p0, 1q. Hence by Jensen’s inequality (given that
x ÞÑ xp is convex)

|f ˚Gσpxq ´ fpxq|
p 6 Ep|fpx´ σNq ´ fpxq|pq,

and hence
}f ˚Gσ ´ f}

p
p 6 Ep}τ´σN pfq ´ f}pq.

By the lemma above we know that almost surely }τ´σN pfq ´ f}p tends to 0 as
σ Ñ 0. So by Dominated Convergence (licit because }τ´σN pfq ´ f}p 6 2}f}p) we
get the desired conclusion. �
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Lecture 19

Proposition 15.11. (a) if µ, ν are Borel probability measures on Rd, then zµ ˚ ν “
pµ ˚ pν.

(b) if f, g P L1pRdq, then zf ˚ g “ pfpg.

Proof. For (a) wlog we may assume that µ “ µX and ν “ µY are the laws of two
independent random variables. By definition, the law of X`Y is precisely µX ˚µY .
But by independence of X and Y ,

EpeiupX`Y qq “ EpeiuXqEpeiuY q

hence {µX`Y puq “ xµXpuqxµY puq as desired. (b) reduces to (a) writing f “ f`´ f´,
a dµ “ f`pxqdx and b dν “ f´pxqdx (where a, b ě 0 are so that µ and ν are
probability measures), doing the same for g and expanding the product. �

The Fourier transform yields a very handy criterion to check convergence in law
of a sequence of random variables: it is equivalent to pointwise convergence of the
Fourier transforms, namely:

Theorem 15.12 (Lévy’s criterion). Let pXnqně1 and X be an Rd-valued random
variable. The following are equivalent:

(i) Xn Ñ X in law,
(ii) for all u P Rd, limnÑ`8 yµXnpuq “ xµXpuq

In particular, if xµX “ xµY for two random variables X and Y , then they coincide
in law, i.e. µX “ µY .

Proof. piq ñ piiq is by definition, because for each u, x ÞÑ eiux is continuous and
bounded. For the other direction, we need to show that for every continuous and
bounded function g on Rd we have:

EpgpXnqq ÑnÑ`8 EpgpXqq.

By Ex. 3 in the 4th Example sheet, it is enough to prove this for every smooth and
compactly supported function g on Rd. But then both g and pg are in L1pRdq (see
Ex 6 in the 4th Example Sheet). So by Fourier inversion we get:

gpxq “

ż

pgpuqe´ixu,xy
du

p2πqd

and thus

EpgpXnqq “

ż

pgpuqyµXnp´uq
du

p2πqd
.

Now we can conclude by Dominated Convergence, since |yµXnp´uq| 6 1,

lim
nÑ8

EpgpXnqq “

ż

pgpuqxµXp´uq
du

p2πqd
.

�

Example: Show that the N pm,σ2q converges weakly to the Dirac mass δm as σ Ñ 0.
[Wlog we may assume that m “ 0. Then by Lévy’s criterion, this boils down to
showing that yµXσ puq Ñ xµXpuq for every u P R, where Xσ is distributed according
to N p0, σ2q and X “ 0 a.s. This is immediate, because yµXσ puq “ expp´σ2u2{2q. ]
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Remark 15.13 (Bochner’s theorem). The characteristic function xµX of a random
variable X is a continuous function equal to 1 at 0. It is easy to verify (exercise)
that it is a positive definite function, namely that given any u1, . . . , uN P Rd and
scalars t1, . . . , tN in C we have:

N
ÿ

i“1

titj xµXpui ´ ujq

is real and ě 0. Solomon Bochner proved in the 1930’s that this property char-
acterizes the Fourier transform of Borel probability measures among all (complex
valued) continuous functions of Rd equal to 1 at the origin.

The inversion formula given previously works under the assumptions that both

f and its Fourier transform pf are integrable. It turns out that when f is square
integrable (i.e. in L2), then one can make sense both of the Fourier transform and

of the inversion formula even though neither f nor pf may be in L1. To do this we
exploit the Hilbert space structure of L2 and the following is the main result:

Theorem 15.14 (Plancherel formula). (a) Let f P L1pRdq X L2pRdq. Then pf P
L2pRdq and

} pf}2 “ p2πq
d{2}f}2,

(b) if f, g P L1pRdq X L2pRdq, then we have the so-called Plancherel formula:

x pf, pgyL2pRdq “ p2πq
dx pf, pgyL2pRdq.

(c) The map

F : L1pRdq X L2pRdq Ñ L2pRdq

f ÞÑ
1

p2πqd{2
pf

extends uniquely to a linear isometry of L2pRdq. Moreover F ˝ Fpfqpxq “
fp´xq.

A “linear isometry” means that }Ff}2 “ }f}2 for every f P L2pRdq. It is that
extension to all of L2pRdq that we continue to call the Fourier transform, and the
relation F ˝Fpfqpxq “ fp´xq can be seen as the extension of the Fourier inversion
formula to all of L2pRdq.

Proof. First we prove (a) and (b). Assume to begin with that pf and pg belong to
L1 X L2. Compute:

x pf, pgy “

ż

pfpuqpgpuqdu “

ż ż

fpxqeixu,xypgpuqdxdu

“

ż

fpxqppgp´xqdx “ p2πqd
ż

fpxqgpxqdx “ p2πqdxf, gy

where we have used the Fourier inversion formula in the second line. It was legiti-
mate to swap the two integrals at the first line, because f and pg are integrable, so
Fubini applies.

To handle the general case, we let σ ą 0 and consider the convolution products
fσ :“ f ˚ Gσ and gσ :“ g ˚ Gσ, where Gσ is the density of a gaussian N p0, σ2Idq.
In other words Gσpxq “

1
σd
Gp xσ q, where G is the density of the standard gaussian

defined in p15.1q. By Proposition 15.11, we may compute:

{f ˚Gσ “ pfxGσ “ pf expp´σ}u}2{2q
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Clearly fσ belongs to L1 X L2 (note that } pf}8 6 }f}1) and so does xgσ. So by the
above we conclude that for every σ ą 0

}xfσ}
2
2 “ p2πq

d}fσ}
2
2.

But now by gaussian approximation (i.e. Lemma 15.9) we get:

lim
σÑ0

}fσ}2 “ }f}2

and

}xfσ}
2
2 “ }

pfxGσ}
2
2 “

ż

| pfpuq|2 expp´σ}u}2{2qdu

converges to } pf}22 as σ Ñ 0 by Monotone Convergence. We conclude that } pf}22 “
p2πqd}f}22.

Now similarly

xxfσ,xgσy “

ż

pfpuqpgpuqe´σ}u}
2

qdu

converges
ş

pfpuqpgpuqdu by Dominated Convergence (licit because pfpg is integrable,

given that pf and pg are in L2, cf. Cauchy-Schwarz). This ends the proof of (a) and
(b).

We now turn to (c). The subspace L1pRdq X L2pRdq is dense in L2pRdq. Indeed
it contains the continuous and compactly supported functions CcpRdq, which is
already dense. So we can define Ff in general as

Ff “ lim
n

Ffn

where fn P L1 X L2 and fn Ñ f in L2. This is well-defined, because on the one
hand

}Ffn ´ Ffm}2 “ }fn ´ fm}2
as follows from the Plancherel formula (part (a) of the proposition), which implies
that Ffn is a Cauchy sequence, hence converges in L2. And on the other hand the
limit does not depend on the choice of sequence pfnqn, because if pf 1nqn is another
such, then

}Ffn ´ Ff 1n}2 “ }fn ´ f 1n}2
so Ff 1n and Ffn have the same limit. In the limit we get: }Ff}2 “ }f}2.

Finally, from the Fourier Inversion Formula, we have

F ˝ Ff “ f_, (15.3)

where f_pxq “ fp´xq for every f P L1 with pf P L1. But such functions are dense in
L2 (they contain all of C8c pR

dq the smooth compactly supported functions). Hence
p15.3q holds for all fucntions f P L2pRdq. �

Remark 15.15 (smoothness/decay barter). An important metamathematical fact
to remember about the Fourier transform is that it exchanges smoothness for decay
at infinity and vice versa. For example a very smooth (i.e. with many continuous
derivatives) integrable function will have a Fourier transform that decays fast (poly-
nomially with a degree that depends on the number of continuous derivatives) at
infinity. Conversely if a function decays fast at infinity (e.g. is compactly sup-
ported), then its Fourier transform will be very smooth. The intuition behind this
is as follows. The characters x ÞÑ eiux are oscillatory functions that oscillate with
frequency proportional to 1{u. So if the decomposition of f as

fpxq “

ż

pfpuqe´iuxdu
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has not too small Fourier coefficients pfpuq even for large values of u, then it means
that the high frequencies occur a lot in the decomposition of f . And consequently
f is not very smooth.

Remark 15.16 (uncertainty principle). Further to this, it can be shown that it

is impossible, unless f is identically zero, for f and its Fourier transform pf to be
both compactly supported (f would be analytic and vanish on an open set, hence
would be identically zero). There even is a (mathematical) uncertainty principle
according to which if X is a random variable whose law has density |fpxq|2 P L1pRq,
and Y is another random variable whose law has density | pfpxq|2{p2πq P L1pRq, then

VarX ¨VarY ě 1{p16π2q,

which can be interpreted as saying that X and Y cannot be both too localized.

Remark 15.17 (Schwartz space). An interesting subspace of L2pRdq is the space
of smooth (i.e. C8) functions all of whose derivatives decay fast at infinity (i.e.
faster that any polynomial). This is called the Schwartz space. And it can be shown
that the Fourier transform F preserves the Schwartz space. See the Example sheet.
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Lecture 20

16. Gaussian random variables

We now come back to probability theory, introduce gaussian random variables
and their co-variance matrix, and then state and prove the Central Limit Theorem.

Definition 16.1. An Rd-valued random variable X is called gaussian if for every
u P Rd the inner product

xX,uy :“ u1X1 ` . . .` udXd

is a real valued gaussian random variable, i.e. has law N pm,σ2q for some m P R
and some σ ě 0. Recall the gaussian law N pm,σ2q is the Borel probability measure
on R whose density with respect to Lebesgue measure is given by

1
?

2πσ2
expp´

px´mq2

2σ2
q

if σ ą 0 and when σ “ 0 we take it to mean δm, the Dirac mass at m.

Example: if N1, . . . , Nd are d independent normalized gaussians (distributed accord-
ing to N p0, 1q), then pN1, . . . , Ndq is a gaussian vector, because all linear combina-
tion α1N1 ` . . . ` αdNd are gaussian (with mean zero and variance

ř

j α
2
j , indeed

it has the right characteristic function:

Epexppiup
ÿ

j

αjNjqqq “
d
ź

1

EpexppiuαjNjqq “
d
ź

1

expp´u2α2
j{2q “ expp´p

ÿ

j

α2
j qu

2{2q.

Rd-valued gaussian random variables are also called gaussian vectors. Their law
is entirely characterized by their mean and their co-variance matrix:

Proposition 16.2. The law of a gaussian vector is determined by

(1) its mean: X :“ pEpX1q, . . . ,EpXdqq, and
(2) its covariance matrix: pCovpXi, Xjq16i,j6d

We often denote it by N pm,Kq, where m P Rd is the mean, and K PMdpRq is the
covariance matrix.

The entries of the covariance matrix are the correlation coefficients between the
coordinates of X, namely: CovpXi, Xjq “ ErpXi ´ EpXiqqpXj ´ EpXjqqs.

Proof. Let xµXpuq :“ EpeixX,uyq be the characteristic function of X. Clearly this is
entirely determined by the family of laws µxX,uy for u ranging in Rd (this fact holds
for any random vector X). But as X is gaussian, we know that xX,uy is a real
valued gaussian random variable. And the law of a real valued gaussian random
variable is determined by its mean m and its variance σ2. So the law of xX,uy is
determined by EpxX,uyq “ xX,uy and by

VarpxX,uyq “ EpxX ´X,uy2q “
ÿ

16i,j6d

uiujCovpXi, Xjq. (16.1)

�

Remark 16.3. Note that p16.1q shows that the covariance matrix of any random
vector is positive semi-definite symmetric matrix.

The next proposition gives a way to construct an arbitrary gaussian vector out
of d independent normalized real valued gaussians. It also shows that the image of
a gaussian vector under an affine transformation of Rd is again a gaussian vector.
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Proposition 16.4. Let N1, . . . , Nd be d independent normalized gaussians each
distributed as N p0, 1q. We write

ÝÑ
N “ pN1, . . . , Ndq. Let A PMdpRq a square dˆ d

matrix and
ÝÑ
b P Rd. Then

A
ÝÑ
N `

ÝÑ
b

is a gaussian vector with mean
ÝÑ
b and covariance matrix AA˚. Moreover, given a

gaussian vector X in Rd, there is a vector
ÝÑ
b P Rd and a matrix A such that X and

AN `
ÝÑ
b have the same law.

Proof. Note first that A
ÝÑ
N `

ÝÑ
b is a gaussian vector, because for every u P Rd,

xu,A
ÝÑ
N `

ÝÑ
b y is a linear combination of Ni’s and a constant vector, so it is gaussian

by the Example above. Clearly EpA
ÝÑ
N `

ÝÑ
b q “

ÝÑ
b . Moreover

CovpA
ÝÑ
N `

ÝÑ
b q “ CovpA

ÝÑ
N q “ AA˚,

because by p16.1q

xu,CovpA
ÝÑ
N quy “ VarpxA

ÝÑ
N,uyq “ Varpx

ÝÑ
N,A˚uyq

“
ÿ

i

pA˚uq2i “ }A
˚u}2 “ xA˚u,A˚uy “ xu,AA˚uy

Finally if X is a gaussian vector, then set
ÝÑ
b “ EpXq and pick A so that CovpXq “

AA˚. Then A
ÝÑ
N `

ÝÑ
b will have the same law as X, because it has same mean and

same covariance matrix. �

Remark 16.5. If X “ pN1, . . . , Ndq, then the covariance matrix of X is the identity
matrix Id. And the law of X is invariant under rotations. Indeed if O P OdpRq
is a rotation centered at the origin, then OX is again a gaussian vector, with
identity covariance matrix. It can be shown that the only Borel probability laws
on Rd invariant under rotation and with independent coordinates are gaussian laws
N p0, λIdq for λ ě 0. This provides a further interesting way in which the gaussian
distribution arises naturally (see the 2019 exam...); for yet another see Exercise 17
in the 4th Example Sheet.

Remark 16.6. If detpAq ‰ 0, then X “ A
ÝÑ
N `

ÝÑ
b is a non-degenerate gaussian:

its law has a density with respect to Lebesgue measure on Rd. Its density can be
easily computed and equals:

1

p2πqd{2|detpAq|
expp´

1

2
}A´1px´

ÝÑ
b q}2q,

and note that }A´1px´
ÝÑ
b q}2 “ xK´1px´

ÝÑ
b q, px´

ÝÑ
b qy, where K :“ CovpXq.

The following characterizes gaussian vectors with independent coordinates:

Proposition 16.7. Let X “ pX1, . . . , Xdq be a gaussian vector. The following are
equivalent:

(a) the Xi’s are independent random variables,
(b) the Xi’s are pairwise independent,
(c) the covariance matrix CovpXi, Xjq is a diagonal matrix.

Proof. (a) implies (b) implies (c) are all clear. By Proposition 16.4 X has the

same law as some A
ÝÑ
N `

ÝÑ
b , where

ÝÑ
b “ EpXq and A is any matrix such that

CovpXq “ AA˚. So if (c) holds, then we can choose A diagonal. This now clearly
implies (a). �

We are now ready to state and prove one of the corner stones of probability
theory, namely the Central Limit Theorem.
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Theorem 16.8 (Central Limit Theorem). Let pXnqně1 be independent and iden-
tically distributed Rd-valued random variables with common law µ. Assume that
}X1}

2 is integrable (we say that µ has a finite moment of order 2). Then

Yn :“
1
?
n
pX1 ` . . .`Xn ´ nEpX1qq

converges in law towards a gaussian distribution on Rd with mean 0 and same
covariance matrix as X1, namely Kµ :“ CovpX1q.

This means that a sum of n independent Rd-valued random variables with com-
mon law µ tends to concentrate around the mean n

ş

Rd xdµpxq with fluctuations of
order

?
n, and the fluctuations are random and distributed according to a gauss-

ian law determined by the covariance matrix of µ. The fact that the gaussian law
arises this way and depends on µ in such a mild way (only via the covariance) is
remarkable.

A historical aside: The phenomenon was discovered by de Moivre in the early
18th century and discussed in his book “The Doctrine of Chances” in which he
applied the recently discovered Stirling formula on the asymptotics of n! to derive
the theorem in the special case of binomial random variables (i.e. Xn is 1 or 0
with probability p and 1 ´ p respectively), see the 3rd Example sheet. The theo-
rem was extended in the present form (perhaps assuming the Xi’s were bounded)
by Laplace later on, and then by Lyapunov to non uniformly distributed random
variables (but this requires a further assumption on the growth of the variances).
Throughout the 19th century the result was known as the “Law of errors”. The
term Central Limit Theorem was coined (in German: “Zentraler Grezwertsatz der
Wahrscheinlichkeitsrechnung”) by Pólya in the 20th century.

Proof. We give the usual proof via Fourier transform and characteristic functions.
By Lévy’s criterion, to show that Yn Ñ Y in law we need to prove pointwise
convergence of characteristic functions yµYnpuq Ñ xµY puq, for each u P Rd Since
xµY ptuq “ {µxY,uyptq, this is equivalent to showing that xYn, uy converges in law
towards xY, uy for each u. So without loss of generality, we may assume that d “ 1.

Then again wlog (changing Xi into pXi ´ EpXiqq{
a

VarpXiq, we may assume
that EpXiq “ 0 and EpX2

i q “ 1. Then we write:

yµYnpuq “ EpeiuYnq “
n
ź

i“1

Epepiu
Xi?
n
q
q “ rpµp

u
?
n
qsn

where pµpuq :“ EpeiuX1q. But X1 is square integrable, so we may differentiate twice
under the integral sign:

d2

du2
pµpuq “

ż

´x2eiuxdµpxq,

which is a continuous function of u. Hence pµpuq is of class C2, and we may write
its Taylor expansion near u “ 0 as follows:

pµpuq “ pµp0q ` upµ1p0q `
u2

2
pµ2p0q ` opu2q.

But note that

pµ1p0q “ i

ż

xdµpxq “ iEpX1q “ 0,

and

pµ2p0q “ ´

ż

x2dµpxq “ ´1
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Hence

pµpuq “ 1´
u2

2
` opu2q.

Hence for each u P R, as n tends to `8,

ppµp
u
?
n
qqn “ p1´

u2

2n
` op

u2

n
qqn “ rexpp´

u2

2n
` op

u2

n
qqsn Ñ expp´

u2

2
q.

Finally we get:

EpeiuYnq Ñ e´u
2
{2 “ pgpuq

where gpxq “ 1?
2π
e´x

2
{2 is the density of the standard gaussian N p0, 1q. This

concludes the proof.
�

Remark 16.9. A comment on proofs of the CLT. This is the slickest proof of
the Central Limit Theorem. There are other proofs. We’ve already mentioned
the original proof by de Moivre via Stirling’s formula (see the 3rd Example sheet).
But this seems to work only for finitely supported laws µ. For bounded random
variables, one can use the method of moments (i.e. prove that all moments converge
to the respective moment of a gaussian law); this works but it is messier than the
proof via charateristic functions we have just given. Another approach is due to
Lindenberg and consists in replacing each increment Xi by a gaussian one at a
time and controlling the error terms (see Feller’s book for Lindeberg’s method).
This leads to a generalized result, where the random variables are allowed to have
different laws. Yet another approach it to use entropy: the gaussian maximizes the
entropy among all laws with given variance. The great Soviet mathematician Linnik
showed how to exploit this to give another proof of the Central Limit Theorem.
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Lecture 21

17. Introduction to ergodic theory

In the last three lectures we give a very brief introduction to ergodic theory.
This is a vast subject and we will only go as far as proving the Von Neumann Mean
ergodic theorem as an application of the Hilbert space techniques developed earlier
in the course and derive from it the (stronger) Birkhoff pointwise ergodic theorem.
Given time constraints we will have to skip over several basic facts and important
motivational examples. For a thorough and modern introduction accessible at this
level we recommend the first few chapters of Einsiedler and Ward “Ergodic Theory”
(Springer GTM).

Ergodic theory is the study of statistical properties of dynamical systems. In
dynamics one studies iterations Tn “ T ˝ . . . ˝ T of a self map T : X Ñ X of
a space X and one is interested in the behavior of orbits tTnxuně0. Is the orbit
dense? does it accumulate onto some attractor? does it come back close to where
it started? if so at what time and how often? etc. Ergodic theory is the study of
these questions from a statistical point of view, where one assumes that the space
X comes equipped with a T -invariant measure µ. The questions then become: does
the orbit tTnxuně0 become equidistributed w.r.t to some measure, i.e. does the
sequence of measures

1

n

n´1
ÿ

i“0

δT ix

on X converge weakly to some measure on X? What is the behaviour of a typical
orbit, i.e. of tTnxuně0 for µ-almost every x? Are there more than one T -invariant
measure on X, can one classify them? etc.

We begin by introducing some standard terminology. Let pX,A, µq be a measure
space. We will assume throughout that µpXq is finite.

Definition 17.1 (measure preserving map). A measurable map T : X Ñ X is
called measure preserving if

T˚µ “ µ,

where T˚µ denotes the image measure. In other words: µpT´1Aq “ µpAq for all
A P A. A measure space pX,A, µq together with a measure preserving map T is
often called a measure preserving system.

Definition 17.2 (Invariant function and invariant σ-algebra). (1) A measur-
able function f : X Ñ R is called T -invariant if f “ f ˝ T .

(2) A measurable subset A P A is called T -invariant if T´1A “ A,
(3) I :“ tA P A, T´1A “ Au is a σ-subalgebra of A called the invariant σ-

algebra.

Lemma 17.3. For a measurable function f : X Ñ R, TFAE:

(i) f is T -invariant,
(ii) f is measurable with respect to I

Proof. For t P R we have:

T´1ptx P X, fpxq ă tuq “ tx P X, f ˝ T pxq ă tu.

So if f is T -invariant this is also equal to tx P X, fpxq ă tu, so that piq implies
piiq. For the converse, note that if f is I-measurable, then tx P X, fpxq ă tu is in
I for all t, and thus equals tx P X, f ˝T pxq ă tu. Hence f and f ˝T have the same
sublevel sets. But this clearly implies that f “ f ˝ T . �
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Definition 17.4 (ergodic transformation). Given a measure space pX,A, µq and a
measure preserving map T : X Ñ X, we say that T is ergodic with respect to µ (or
equivalently that µ is ergodic with respect to T ) if for all A P I either µpAq “ 0 or
µpAcq “ 0.

In other words a measure preserving system is ergodic if it cannot be written as
the disjoint union of two non-trivial subsystems (i.e. invariant measurable subsets
of positive measure). So it is a kind of irreducibility condition, and indeed one
can often reduce the understanding of a measure preserving system to ergodic
subsystems.

Exercise/Example: Let X be a finite set and T : X Ñ X a self map. Take A the

discrete Boolean algebra (i.e. all subsets of X) and µ the counting measure. Then

(1) T is measure preserving if and only if T is a bijection,
(2) T is ergodic if and only if for every x, y P X, there is an integer n ě 0 such

that Tnx “ y.

Lemma 17.5. Let pX,A, µ, T q be a measure preserving system. Then T is ergodic
with respect to µ if and only if for every I-measurable map f there is a P R such
that fpxq “ a for µ-almost every x P X.

Proof. This is Exercise 11 in the 4th Example Sheet. �

We now study two important examples:

Example 1: (circle rotation) Let X “ R{Z be the circle. Let A be the Borel σ-

algebra and m Lebesgue measure (rather Lebegue measure on r0, 1q identified nat-
urally with R{Z). Fix a P R and consider the self-map

T : X Ñ X,

x ÞÑ x` a.

Then T is measure preserving. We have:

Proposition 17.6. T is ergodic w.r.t m if and only if a is irrational.

Note that this is also equivalent to asking that there is a dense orbit (or that all
orbits are dense).

Proof. The proof uses the Fourier transform. Let f “ 1A, where A P I. We
compute the Fourier coefficients:

pfpnq “

ż

R{Z
e2iπnxfpxqdx “

ż

R{Z
e2iπnT pxqf ˝ T pxqdx

“

ż

R{Z
e2iπnae2iπnxfpx` aqdx “

ż

R{Z
e2iπnae2iπnxfpxqdx “ e2iπna pfpnq

where we have first used the fact thatm “ dx is T -invariant, and then that f˝T “ f .

If a is irrational, then e2iπna ‰ 1 when n ‰ 0 so we must conclude that pfpnq “ 0 if
n ‰ 0. But a function on R{Z all of whose Fourier coefficients are zero except when
n “ 0 is almost everywhere constant (to see this apply Parseval’s formula). On the
other hand if a is rational, say a “ p

q , then T is not ergodic, because, for instance

the union of intervals of the form rkq ,
k
q `

1
2q q for k “ 0, . . . , q´ 1 is invariant under

T and has measure 1
2 .

�
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Example 2: (times 2 map on the circle) Again let X “ R{Z with Lebesgue measure
m, but this time, we consider the map

T2 : X Ñ X,

x ÞÑ 2x mod Z.

Note that T2 is a measure preserving map (even though it dilates by a factor 2).
Indeed, the preimage of a small interval of size s is made of two intervals of size
s{2.

Proposition 17.7. T2 is ergodic.

Proof. Let f “ 1A, where A P I. Once again we can compute its Fourier coeffi-
cients:

pfpnq “

ż

R{Z
e2iπnxfpxqdx “

ż

R{Z
e2iπnT2pxqf ˝ T2pxqdx

“

ż

R{Z
e4iπnxfpxqdx “ pfp2nq.

where we have first used the fact that m “ dx is T2-invariant, and then that
f ˝ T2 “ f . Iterating this relation we see that

pfp2knq “ pfpnq (17.1)

for all n P Z and all k ě 1. However f P L2pX, dxq, so Parseval’s identity reads:

ÿ

nPZ

| pfpnq|2 “

ż

R{Z
|fpxq|2dx “ mpAq.

This is finite, so by p17.1q we must have pfpnq “ 0 for all n ‰ 0. Hence f is almost
everywhere constant. In other words either mpAq “ 0, or mpAcq “ 0, which means
that T2 is ergodic.

�

Remark 17.8. The Lebesgue measure is not the only T2-invariant and ergodic
Borel probability measure on R{Z. For example the Dirac mass δ0 is invariant and
so is 1

2 pδ1{3 ` δ2{3q. But there are non-atomic invariant measures too. For example
we may consider the random variable X :“

ř

ně1
εn
2n , modulo Z, where pεnqně1 is a

sequence of i.i.d. random variables such that Ppεn “ 0q “ p and Ppεn “ 1q “ 1´ p
for some p P p0, 1q. Then 2X mod Z has the same law as X mod Z. Thus this
law is therefore invariant under T2. And it is not Lebesgue if p ‰ 1

2 and has no
atoms. A famous conjecture of Furstenberg (still open!) asserts that the only Borel
probability measure on R{Z with no atoms that is invariant under both T2 and T3
is Lebesgue.

18. Canonical model for stochastic processes

In this section, starting with an arbitrary sequence of random variables, we are
going to associate dynamical system T : X Ñ X, where X will be the space of all
sequences. Then we investigate invariant measures on this system.

Let pXnqně1 be a sequence of Rd-valued random variables on a probability space
pΩ,F ,Pq. We define

Φ : Ω Ñ pRdqN

ω ÞÑ pXnpωqqně1

be the sample path map, it assigns to the outcome ω P Ω the full sequence, or
sample path, pXnpωqqn.



74 PROBABILITY AND MEASURE 2019-2020

Now on the space of sequences X :“ pRdqN, we may define the shift map

T : pRdqN Ñ pRdqN

pxnqně1 ÞÑ pxn`1qně1.

The space of sequences X :“ pRdqN is also called the shift space. On it we can
define the coordinate functions:

xn : X Ñ Rd

pxnqně1 ÞÑ xn.

We endow X with a σ-algebra A, which is called the product σ-algebra, and is
defined as the smallest σ-algebra that makes all coordinate functions measurable.
In other words A “ σpxn, n ě 1q.

It is also the σ-algebra generated by the Boolean algebra of cylinder sets. A
cylinder set is a subset of X of the form π´1

F pAq, F Ă N is a finite set of indices, A

is a Borel set in pRdq|F |, and πF : X Ñ pRdq|F | is the projection to the coordinates
i1, ..., ik, if F “ ti1, . . . , iku.

The image measure µ :“ Φ˚P is a probability measure on pX,Aq and is called
the law of the stochastic process pXnqně1.

The dynamical system pX,A, µ, T q is called the canonical model associated to
pXnqn.

Proposition-Definition 18.1. Let pXnqně1 be a stochastic process and pX,A, µ, T q
its canonical model. Then the following are equivalent:

(1) pX,A, µ, T q is measure preserving,
(2) for all k ě 1, the joint law of pXn, Xn`1, . . . , Xn`kq is independent of n.

In this case, the process is called stationary.

Proof. Note that µ is the law of pXiqiě1, while Tn˚ µ is the law of pXi`nqiě1. So
if µ “ T˚µ, then for all n, µ “ Tn˚ µ and the two laws coincide. Conversely if the
laws coincide on cylinders, they must be equal on all of A by Dynkin’s lemma (the
cylinders form a π-system that generates). �

A special class of stationary processes are the so-called Bernoulli shifts:

Proposition-Definition 18.2. If pXnqně1 is an i.i.d. process, then it is stationary
and the canonical model pX,A, µ, T q is ergodic. In this case we say that the measure
preserving system pX,A, µ, T q is a Bernoulli shift, and µ “ νbN, where ν is the law
of X1.

Proof. This is an application of Kolmogorov’s 0-1 law. Clearly the process is sta-
tionary, so µ is T -invariant. We have to show that it is ergodic. So let I be the
invariant σ-algebra. Note that Φ´1I is contained in the tail σ-algebra T of the
process, namely T “

Ş

k σpXk, Xk`1, . . .q. Indeed, if A P I, then A “ T´1A and

Φ´1pAq “ tω P Ω, pXnpωqqně1 P Au

“ tω P Ω, pXnpωqqně1 P T
´1Au “ tω P Ω, pXn`1pωqqně1 P Au

“ tω P Ω, pXn`kpωqqně1 P Au Ă σpXk`1, Xk`2, . . .q

for all k ě 1. This means that Φ´1pAq P T .
But the pXnqn’s are i.i.d., so Kolmogorov’s 0-1 law implies that T is trivial, and

hence µpAq P t0, 1u. So T is ergodic. �

Remark 18.3. Sometimes authors reserve the term Bernoulli shift (or Bernoulli
scheme) to the case when ν is finitely supported on a finite abstract set (i.e. not
necessarily part of Rd).
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Lecture 22

19. The mean ergodic theorem

Let pX,A, µ, T q be a probability measure preserving system.

Theorem 19.1 (Mean ergodic theorem in L2). Let f P L2pX,A, µq. We set

Snpfq :“
1

n

n´1
ÿ

0

f ˝ T i.

Then there is a T -invariant function f̄ (in fact f̄ “ Epf |Iq the conditional expec-
tation, where I is the σ-algebra of T -invariant subsets) such that

lim
nÑ`8

Snpfq “ f̄

where the convergence takes place in L2pX,A, µq.

Remark: If H is a Hilbert space and A : H Ñ H is a bounded linear map, then
we may define its adjoint A˚, which is the linear map y ÞÑ A˚y defined to be the
unique vector (as given by the Riesz representation theorem) such that

xAx, yy “ xx,A˚yy.

Observe that the operation A ÞÑ A˚ is involutive, i.e. A˚˚ “ A. Moreover the
operator norm of A and A˚ coincide, because

}A˚y} “ sup
}x}“1

|xx,A˚yy| “ sup
}x}“1

|xAx, yy| 6 }A} ¨ }y}

which gives }A˚} 6 }A} and hence }A˚} “ }A} by symmetry (one can further prove
that }AA˚} “ }A}2).

Proof of the mean ergodic theorem. We give the original proof, due to von Neu-
mann (1932). It is based on a simple Hilbert space argument. We consider the
Hilbert space H :“ L2pX,A, µq. Let

U : HÑH
f ÞÑf ˝ T.

It is clear that U is a linear operator on H, which is bounded and in fact an isometry,
that is:

}Uf} “ }f}

for every f P H. This is clear, because by assumption µ is T -invariant, so

}Uf}2 “

ż

X

|f ˝ T |2dµ “

ż

X

|f |2dµ “ }f}2.

Let W :“ tφ ´ Uφ, φ P Hu. This is a subspace of H (called the subspace of
co-boundaries).

(a) If f PW , then

Snf “
1

n

n´1
ÿ

0

pφ ˝ T i ´ φ ˝ T i`1q “
1

n
pφ´ φ ˝ Tnq

obviously tends to 0 in H as nÑ `8.
(b) if f PW (the closure of W in H), then we again have Snf Ñ 0, because for

every ε ą 0 we can find g PW with }f ´ g} ă ε, and so:

}Snf ´ Sng} 6
1

n

n
ÿ

1

}f ˝ T i ´ g ˝ T i} 6 }f ´ g} 6 ε,
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which implies that lim sup }Snf} 6 ε, and hence that lim sup }Snf} “ 0 since ε was
arbitrary.

(c) By the orthogonal decomposition for closed subspaces of Hilbert space we
have:

H “W ‘WK

and W “ pWKqK. Since Snf Ñ 0 if f P W , without loss of generality we may
assume that f PWK. But we now observe the following:

tg P H, g “ Ugu ĂWK “ tg P H, xg, φ´ Uφy “ 0@φ P Hu “ tg P H, xg, φy “ xU˚g, φy @φ P Hu
“ tg P H, g “ U˚gu Ă tg P H, g “ Ugu,

which is exactly the subspace of T -invariant functions in H. To justify the last
containment in the above formula, note that

}g ´ Ug}2 “ }g}2 ` }Ug}2 ´ 2 Rexg, Ugy “ 2}g}2 ´ 2 RexU˚g, gy,

which is clearly 0 if g “ U˚g.
So if g P WK, then g “ g ˝ T and Sng “ g for all n. Hence the theorem holds

with f̄ “ the orthogonal projection of f onto the closed subspace WK of T -invariant
functions. �

The mean ergodic theorem gives convergence of ergodic averages in L2. It is
easy to derive from it convergence in Lp for any p P r1,`8q if we assume that f is
in Lp to begin with:

Corollary 19.2 (Mean ergodic theorem in Lp). Let p P r1,`8q. Let pX,A, µ, T q
be a probability measure preserving system. Let f P LppX,A, µq and Snpfq :“
1
n

řn´1
0 f ˝T i as before. Then there is a T -invariant function f̄ (in fact f̄ “ Epf |Iq,

where I is the σ-algebra of T -invariant subsets) such that

lim
nÑ`8

Snpfq “ f̄

where the convergence takes place in LppX,A, µq.

Proof. We first observe that, as a consequence of the completeness of Lp, it is
enough to prove that the result holds for a dense subspace of functions, say W .
Indeed assume that the result holds for every g P W and that W is dense in Lp.
Then given f P Lp, the sequence of ergodic averages Snf will be a Cauchy sequence,
because for every ε ą 0 there is g PW such that }f ´ g}p ă ε and hence for all n

}Snf ´ Sng}p 6 }f ´ g}p 6 ε

Therefore when n is large enough }Snf ´ ḡ}p 6 2ε. And for any n,m large enough
}Snf ´ Smf}p 6 4ε. So pSnfqn is a Cauchy sequence in Lp and thus converges to
some limit f̄ . It is clear that f̄ is T -invariant, i.e. f̄ ˝ T “ f̄ , because

Snf ˝ T ´ Snf “
1

n
pf ˝ Tn ´ fq

clearly tends to 0.
To conclude the proof, take W “ L8pX,A, µq. It is a dense subspace in Lp for

all p ě 1 (recall that the vector space spanned by simple functions is dense in any
Lp p ă 8). The von Neumann Mean ergodic theorem applies to any g P W and
gives convergence of ergodic averages Sng towards some T -invariant function ḡ in
L2. Note that ḡ PW as well, because }Sng}8 6 }g}8 for all n, so }ḡ}8 6 }g}8. To
see that the convergence Sng Ñ ḡ holds in Lp as well, note that if p 6 2, }¨}p 6 }¨}2,

while if p ą 2, then } ¨ }pp 6 } ¨ }
2
2 ¨ } ¨ }

p´2
8 . �
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We will soon prove that ergodic averages actually also converge pointwise assum-
ing only that f belongs to L1. This is the content of the pointwise ergodic theorem.
In order to get there, we will first establish a technical result, that goes under the
name of maximal ergodic theorem.

Theorem 19.3 (Maximal ergodic theorem). Let pX,A, µ, T q be a probability mea-
sure preserving system and f P L1pX,A, µq. For any t ą 0 we set

Et :“ tx P X, sup
n
Snfpxq ą tu.

Then

µpEtq 6
1

t
}f}1.

The event Et is the set of orbits of T whose ergodic averages manage to overshoot
t at least once. So the result says that the probability that the ergodic averages
ever become larger than t decays at least as Op1{tq, where the implied constant in
O is simply the L1-norm of f .

The maximal ergodic theorem can also be understood as follows: say that f “
1A, where A P A is a set of small µ-measure. Then the result is a quantified way
of saying that except for a set of starting points x of small measure, for all n the
average time spent in A up to time n is small. More precisely, if µpAq “ ε2, setting
t “ ε, we get:

µpEεq 6 ε
´1}f}1 “ ε

and Eε is the set of exceptional starting points x whose orbit up to time n can, for
certain n’s, spend a time larger than εn in A.

To prove the maximal ergodic theorem, we will need the:

Lemma 19.4 (the maximal inequality). Let f P L1pX,A, µq and

fn “ nSnf “
n´1
ÿ

i“0

f ˝ T i

for n ą 0. Set also f0 “ 0. For each N ě 0 let

PN “ tx P X, max
06n6N

fnpxq ą 0u.

Then
ż

PN

fdµ ě 0.

Proof. Set FN :“ max06n6N fn. For all n 6 N we have fn 6 FN so

fn`1 “ fn ˝ T ` f 6 FN ˝ T ` f.

If x P PN , FN pxq ą 0, so FN pxq “ max16n6N fnpxq 6 max06n6N fn`1pxq, so

FN pxq 6 FN ˝ T pxq ` fpxq

and integrating over PN yields:
ż

PN

FNdµ 6
ż

PN

FN ˝ Tdµ`

ż

PN

fdµ.

Note that FN “ 0 on P cN as f0 “ 0, and FN ě 0 everywhere, so
ż

PN

FNdµ “

ż

X

FNdµ 6
ż

X

FN ˝ Tdµ`

ż

PN

fdµ,

which implies that
ş

PN
fdµ ě 0 by T -invariance of µ. �
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Proof of the Maximal ergodic theorem. Simply apply the maximal inequality to g “
f ´ t and note that

Etpfq “
ď

Ně1

PN pgq

while Sng “ Snf ´ t. The maximal inequality implies that
ż

PN pgq

pf ´ tqdµ ě 0,

or in other words tµpPN pgqq 6
ş

PN pgq
fdµ 6

ş

PN pgq
|f |dµ 6 }f}1. Since PN Ă PN`1,

we conclude that
tµpEtq 6 }f}1.

�
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Lecture 23

20. The pointwise ergodic theorem

In this last lecture, we present the pointwise ergodic theorem. This is an improve-
ment on the mean ergodic theorem asserting that the ergodic averages converge
almost everywhere.

Theorem 20.1 (Pointwise ergodic theorem). Let pX,A, µ, T q be a probability mea-

sure preserving system. Let f P L1pX,A, µq and Snpfq :“ 1
n

řn´1
0 f ˝ T i as before.

Then there is a T -invariant function f̄ (in fact f̄ “ Epf |Iq, where I is the σ-algebra
of T -invariant subsets) such that

lim
nÑ`8

Snpfq “ f̄

where the convergence µ-almost everywhere. If particular, if the system is ergodic,
then Snpfq converges almost everywhere to the constant

ş

fdµ.

When the system is ergodic and f “ 1A for some A P A, the theorem says that for
µ-almost every starting point x, the time spent inside A by the orbit tTnxu06n6N
of x between n “ 0 and n “ N , is roughly µpAqN as N grows to infinity. In other
words, almost every orbit is equidistributed.

Proof. This will follow easily in two steps. First we use the Maximal ergodic theo-
rem to reduce to the case when f is bounded. And in a second step we combine the
Maximal ergodic theorem with the L1 mean ergodic theorem to conclude pointwise
convergence in case f is bounded. Note that by considering f ´ f̄ in place of f , we
may assume that Epf |Iq “ 0.

Step 1: reduction to f bounded. Given M ą 0, let fM :“ f1|f |ăM be the
truncation of f at height M . We assume that the result holds for fM for each M .
Let ε P p0, 1q. Let EM be the subset of those x P X with |EpfM |Iqpxq| ą ε. Note
that µpEM q Ñ 0 as M Ñ `8, because EpfM |Iq converges µ-a.e. to Epf |Iq “ 0.
Note further that for µ-almost every x R EM , if lim supn |Snfpxq| ą 3ε, then
supn |Snpf ´ fM qpxq| ą 2ε, because by assumption SnfM Ñ EpfM |Iq µ-a.e.

On the other hand, the Maximal ergodic theorem gives:

µptx P X, sup
n
|Snpf ´ fM qpxq| ą 2εuq 6

1

ε
}f ´ fM }1.

Letting M tend to infinity, we thus get:

µptx P X, lim sup
n

|Snfpxq| ą 3εuq 6 µpEM q `
1

ε
}f ´ fM }1,

and the right hand side tends to 0 as M Ñ `8. This shows that Snf Ñ 0 µ-a.e.
as desired.

Step 2: case when f is bounded. We already know, by the L1 mean ergodic

theorem (Corollary 19.2) that the ergodic averages Smf converge in L1. So

lim
mÑ`8

}Smf}1 “ 0.

Fix a large m and consider a larger n ą m. Then write:

nmSnpSmfq “
ÿ

06iăn,06jăm

f ˝ T i`j

and observe that in this sum each term f ˝ T k with m 6 k 6 n appears m times
exactly, while the others appear at most m times and there are at most 2m other
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relevant values of k, so that makes at most 2m2 other terms. Since f is bounded,
we conclude that:

nmSnpSmfq “ mnSnf `Opm
2}f}8q.

In particular as nÑ `8 and m stays fixed,

}SnpSmfq ´ Snf}8 Ñ 0.

So if x P X is such that lim supn |Snfpxq| ą 2ε, then lim supn |SnSmfpxq| ą 2ε
and in particular supn |SnSmfpxq| ą 2ε. We can thus apply the Maximal ergodic
theorem to Smf and conclude that

µptx P X, lim sup
n

|Snfpxq| ą 2εuq 6
1

ε
}Smf}1.

The left hand side is independent of m, so we can let m tend to infinity, and since
}Smf}1 Ñ 0, we conclude that the left hand side is 0. Since ε was arbitrary, this
means that Snfpxq Ñ 0 for µ-a.e. x as desired.

�

We have used the von Neumann Mean ergodic theorem in our proof of the
pointwise ergodic theorem. There are other routes that avoid it (see e.g. Norris’s
notes). Conversely it is an easy exercise to derive the mean ergodic theorem from
the pointwise theorem (basically truncating and applying Lebesgue’s Dominated
Convergence Theorem). The pointwise ergodic theorem was proven by George
Birkhoff (who, for the record, scooped out von Neumann by rushing his proof to
publication by December 1931, while von Neumann’s earlier discovery appeared
only in 1932.)

Remark 20.2. Another landmark theorem of real analysis is the Lebesgue differ-
entiation theorem we have alluded to earlier in the course (go to Part II “Analysis
of function” in Lent to learn about it). There are striking similarities between the
statement and the proof of the pointwise ergodic theorem and the Lebesgue differ-
entiation theorem. Also related and to some extent a generalization of the above is
Doob’s martingale convergence theorem in probability theory.

A straightforward consequence of the pointwise ergodic theorem is the Strong
Law of Large numbers:

Corollary 20.3 (Strong Law of Large Numbers). Let pXnqně1 be i.i.d. random
variables in Rd with finite first moment (i.e. Ep}X1}q ă 8). Then

1

n

n
ÿ

1

Xi Ñ EpX1q

almost surely.

“Strong” refers to the fact that the convergence holds almost surely (while a
“weak law” gives convergence in probability). This was first proved in this gen-
erality by Kolmogorov (in 1930, by a different argument), who also showed that
the conclusion holds even if the Xi are not identically distributed, but, say, have
the same average and bounded variance. Note that we have already proved the
Strong Law under the stronger assumption that there is a finite fourth moment
(see Theorem 10.19). As an alternative to the below, the strong law for finite mo-
ment of order 1 can also be obtained using a truncation argument by refining the
proof method of Theorem 10.19 above, see Williams’ lovely book “Probability with
Martingales”
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Proof. Let pΩ,F ,Pq be the probability space on which the random variables are
defined and pX,A, µ, T q the associated canonical model. Since the pXnqn’s are
i.i.d., pX,A, µ, T q is a Bernoulli shift (in particular ergodic). Define the function
f on X by fpxq “ x1pxq. It is in L1pX,A, µq because }f}1 “ E}X1} ă 8. The
pointwise ergodic theorem implies that

Snfpxq Ñ

ż

fdµ

for µ-almost every x P X. But µ “ Φ˚pPq, so
ş

fdµ “ EpX1q and Snfpxq “
1
n pX1 ` . . . ` Xnqpωq if x “ Φpωq and Φ : Ω Ñ X is the sample path map. The
result follow. �

As a consequence of the ergodic theorem, one may give the following character-
ization of ergodic measures among invariant ones as extremal points. Let pX,Aq
be a measurable space and T : X Ñ X a measurable self map. Let IpXq be the
family of all T -invariant probability measures on pX,Aq. A measure µ P IpXq is
said to be extremal if one cannot find µ1 ‰ µ2 P IpXq and t P p0, 1q such that
µ “ tµ1 ` p1´ tqµ2. We have:

Proposition 20.4. An invariant measure µ P IpXq is ergodic if and only if it is
extremal.

Proof. If µ is not ergodic, then there is a T -invariant A P A with µpAq P p0, 1q.
Set µ1 “

1
µpAqµ|A and µ2 “

1
µpAcqµ|Ac . Then µ1 ‰ µ2 are both T -invariant, while

µ “ tµ1 ` p1´ tqµ2 for t “ µpAq. So µ is not extremal.
Conversely, if µ is ergodic, and µ “ tµ1` p1´ tqµ2 for some µ1, µ2 P IpXq, then

given any B P A, the pointwise ergodic theorem applied to pX,A, µq implies that
for µ-almost every x, and hence for µi-almost every x (for both i “ 1, 2) we have

Snp1Bq ÑnÑ`8 µpBq.

By Dominated Convergence, we conclude that µipSnp1Bqq Ñ µpBq. But µipSnp1Bqq “
µipBq. And it follows that µipBq “ µpBq. Hence µ1 “ µ2, and µ is extremal. �
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