Probability and Measure 4

Exercises marked with a star * are not examinable

1. (a) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and \mathcal{G} a sub- σ-algebra of \mathcal{F}. Show that $\mathbb{L}^{2}(\Omega, \mathcal{G}, \mathbb{P})$ is a closed subspace of $\mathbb{L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$.
(b) Let $V_{1} \leq V_{2} \leq \ldots$ be an increasing sequence of closed subspaces of $\mathbb{L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$. For $f \in$ $\mathbb{L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$, denote by f_{n} the orthogonal projection of f on V_{n}. Show that f_{n} converges in \mathbb{L}^{2}.
2. (continuity of translation in $\left.\mathbb{L}^{p}\right)$. Let $p \in[1,+\infty)$ and $f \in \mathbb{L}^{p}\left(\mathbb{R}^{d}\right)$. For $t \in \mathbb{R}^{d}$ let $\tau_{t}(f)$ be the translate $\tau_{t}(f)(x)=f(x+t)$. Show that $\tau_{t}(f) \in \mathbb{L}^{p}\left(\mathbb{R}^{d}\right)$ and that the map $t \mapsto \tau_{t}(f)$ is continuous from \mathbb{R}^{d} to $\mathbb{L}^{p}\left(\mathbb{R}^{d}\right)$. What happens when $p=+\infty$?
3. Let μ be a Borel probability measure on \mathbb{R}^{d} and let ($\mu_{n}: n \in \mathbb{N}$) be a sequence of such measures. Suppose that $\mu_{n}(f) \rightarrow \mu(f)$ for all C^{∞} functions on \mathbb{R}^{d} of compact support. Show that μ_{n} converges weakly to μ on \mathbb{R}^{d}.
4. For a finite Borel measure μ on the line show that, if $\int|x|^{k} d \mu(x)<\infty$, then the Fourier transform $\hat{\mu}$ of μ has a k th continuous derivative, which at 0 is given by

$$
\hat{\mu}^{(k)}(0)=i^{k} \int x^{k} d \mu(x) .
$$

Show further that if X, Y are two bounded random variables such that $\mathbb{E}\left(X^{k}\right)=\mathbb{E}\left(Y^{k}\right)$ for all integers $k \geq 0$, then X and Y have the same distribution.
5. (i) Show that for any real numbers a, b one has $\int_{a}^{b} e^{i t x} d x \rightarrow 0$ as $|t| \rightarrow \infty$.
(ii) Show that, for any $f \in L^{1}(\mathbb{R})$, the Fourier transform

$$
\hat{f}(t)=\int_{-\infty}^{\infty} e^{i t x} f(x) d x
$$

tends to 0 as $|t| \rightarrow \infty$. This is the Riemann-Lebesgue Lemma.
6. Let g be a C^{∞} function of compact support on \mathbb{R}^{d}. Show that \hat{g} is integrable.
7. The Schwartz space \mathcal{S} of \mathbb{R} is the space of all C^{∞} complex valued functions f on \mathbb{R} such that for every $k, n \in \mathbb{Z}_{\geq 0}$ we have $f^{(k)}(x)=O\left(1 /|x|^{n}\right)$ as $|x| \rightarrow+\infty$. Show that if f belongs to \mathcal{S} so does \hat{f}.
8. Let X_{1}, \ldots, X_{n} be independent $N(0,1)$ gaussian random variables. Show that

$$
\left(\bar{X}, \sum_{m=1}^{n}\left(X_{m}-\bar{X}\right)^{2}\right) \quad \text { and } \quad\left(\frac{X_{n}}{\sqrt{n}}, \sum_{m=1}^{n-1} X_{m}^{2}\right)
$$

have the same distribution, where $\bar{X}=\left(X_{1}+\cdots+X_{n}\right) / n$.
9. The Cauchy distribution has density function $f(x)=\pi^{-1}\left(1+x^{2}\right)^{-1}$ for $x \in \mathbb{R}$. Show that one can simulate a random variable X whose law follows the Cauchy distribution by picking a random angle θ uniformly in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and setting $X=\tan \theta$. Show that the corresponding characteristic function is given by $\varphi(u)=e^{-|u|}$. Show also that, if X_{1}, \ldots, X_{n} are independent Cauchy random variables, then the random variable $\left(X_{1}+\cdots+X_{n}\right) / n$ is also Cauchy.
11. Let (X, \mathcal{A}, μ, T) be a measure-preserving system.
(a) Show that it is ergodic if and only if every T-invariant measurable function is constant almost everywhere.
(b) If f is a measurable function on X such that $f=f \circ T$ almost everywhere, show that there is a T-invariant measurable function g on X such that $g=f$ almost everywhere.
12. Let $\left(X_{n}\right)_{n}$ be a sequence of random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{F}_{n}=$ $\sigma\left(X_{1}, \ldots, X_{n}\right)$. Assume that $\mathcal{F}=\sigma\left(X_{1}, X_{2}, \ldots\right)$. Show that for every $\epsilon>0$, and every $A \in \mathcal{F}$, there is $n \geq 1$ and $B \in \mathcal{F}_{n}$ such that $\mathbb{P}(A \triangle B)<\epsilon$.
13. (Markov shift) Let $p \in(0,1)$ and $q=1-p$. Consider a random sequence of 0 's and 1 's, where the first digit is chosen uniformly at random (i.e. $\left.\mathbb{P}\left(X_{1}=0\right)=\mathbb{P}\left(X_{1}=1\right)=\frac{1}{2}\right)$ and at each step the next digit either remains the same with probability p, or changes with probability q. Let $\left(X_{n}\right)_{n \geq 1}$ be the random process thus obtained.
(1) Show that $\left(X_{n}\right)_{n \geq 1}$ is a stationary process, and let (X, \mathcal{A}, μ, T) be the associated canonical model, where $X=\{0,1\}^{\mathbb{N}}, \mathcal{A}$ the σ-algebra generated by cylinders and T is the shift.
(2) Show that for any two cylinder sets A, B we have

$$
\mu\left(A \cap T^{-k} B\right) \rightarrow_{k \rightarrow+\infty} \mu(A) \mu(B)
$$

(3) Prove that the previous limit holds for all $A, B \in \mathcal{A}$ and deduce that (X, \mathcal{A}, μ, T) is ergodic.
14. Let (X, \mathcal{A}, μ, T) be an ergodic measure preserving system, $\mathcal{H}=\mathbb{L}^{2}(X, \mathcal{A}, \mu)$ and $U: \mathcal{H} \rightarrow \mathcal{H}$ the operator $f \mapsto f \circ T$. Show that every eigenvalue of U is simple (i.e. its space of eigenfunctions is one dimensional) and that the set of eigenvalues of U forms a subgroup of $\{z \in \mathbb{C},|z|=1\}$.
15.*. (Sobolev embedding) Say that $f \in \mathbb{L}^{2}(\mathbb{R})$ is \mathbb{L}^{2}-differentiable if there is a function $D f$ in $\mathbb{L}^{2}(\mathbb{R})$ (called the \mathbb{L}^{2}-derivative of f) such that

$$
\left\|\theta_{h} f-f-h D f\right\|_{2} / h \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

where $\theta_{h} f(x)=f(x+h)$. For example show that the function $f(x)=\max (1-|x|, 0)$ is \mathbb{L}^{2} differentiable and find its \mathbb{L}^{2}-derivative.

Suppose that $f \in \mathbb{L}^{1}(\mathbb{R}) \cap \mathbb{L}^{2}(\mathbb{R})$ is \mathbb{L}^{2}-differentiable. Show that f has admits a continuous version (i.e. $\exists g$ continuous s.t. $g(x)=f(x)$ a.e.).

Hint: show that $u \hat{f}(u) \in \mathbb{L}^{2}$ and that $\|f\|_{\infty} \leq C\|(1+|u|) \hat{f}(u)\|_{2}$ for some finite absolute constant C, to be determined. This is the Sobolev embedding theorem and Sobolev inequality.
16.*. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a Gaussian random variable in \mathbb{R}^{n} with mean μ and covariance matrix V. Assume that V is invertible write $V^{-1 / 2}$ for the positive-definite square root of V^{-1}. Set $Y=\left(Y_{1}, \ldots, Y_{n}\right)=V^{-1 / 2}(X-\mu)$. Show that Y_{1}, \ldots, Y_{n} are independent $N(0,1)$ random variables. Show further that we can write X_{2} in the form $X_{2}=a X_{1}+Z$ where Z is independent of X_{1} and determine the distribution of Z.
17.*. For each $n \in \mathbb{N}$, there is a unique probability measure μ_{n} on the unit sphere $S^{n-1}=\{x \in$ $\left.\mathbb{R}^{n}:|x|=1\right\}$ such that $\mu_{n}(A)=\mu_{n}(U A)$ for all Borel sets A and all orthogonal $n \times n$ matrices U. Fix $k \in \mathbb{N}$ and, for $n \geq k$, let γ_{n} denote the probability measure on \mathbb{R}^{k} which is the law of $\sqrt{n}\left(x^{1}, \ldots, x^{k}\right)$ under μ_{n}. Show
(a) if $X \sim N\left(0, I_{n}\right)$ then $X /|X| \sim \mu_{n}$,
(b) if $\left(X_{n}: n \in \mathbb{N}\right)$ is a sequence of independent $N(0,1)$ random variables and if $R_{n}=$ $\sqrt{X_{1}^{2}+\cdots+X_{n}^{2}}$ then $R_{n} / \sqrt{n} \rightarrow 1$ a.s.,
(c) γ_{n} converges weakly to the standard Gaussian distribution on \mathbb{R}^{k} as $n \rightarrow \infty$.

