E. Breuillard

Michaelmas 2019

Probability and Measure 1

Exercises marked with a star * are not examinable

1. Let *E* be a Lebesgue measurable subset of the real line with positive Lebesgue measure m(E). Show that for every $\epsilon > 0$ there exists an open interval (a, b) such that $m(E \cap (a, b)) > (1 - \epsilon)|a - b|$.

2. Show that the following sets of subsets of \mathbb{R} all generate the same σ -algebra: (a) $\{(a,b): a < b\}$, (b) $\{(a,b]: a < b\}$, (c) $\{(-\infty,b]: b \in \mathbb{R}\}$.

3. Let *E* be a set and let *S* be a set of σ -algebras on *E*. Define

$$\mathcal{E}^* = \{ A \subseteq E : A \in \mathcal{E} \quad \text{for all} \quad \mathcal{E} \in \mathcal{S} \}.$$

Show that \mathcal{E}^* is a σ -algebra on E. Show, on the other hand, by example, that the union of two σ -algebras on the same set need not be a σ -algebra.

4. Let *E* be a set and \mathcal{B} a Boolean algebra of subsets of *E*. Let $m : \mathcal{B} \to [0, +\infty]$ be such that $m(\emptyset) = 0$. Suppose that *m* is finitely additive. Show that *m* is countably additive if and only if it is countably subadditive.

5. Let E be a set and \mathcal{E} a family of subsets of E, which contains E and \emptyset , and is stable under complementation, under countable disjoint unions and under finite intersections. Show that \mathcal{E} is a σ -algebra.

6. Let X be a set and \mathcal{A} a Boolean algebra of subsets of X. Let $\mu : \mathcal{A} \to [0, +\infty)$ be a finitely additive measure. Show that μ is countably additive on \mathcal{A} (i.e. $\mu(\bigcup A_n) = \sum_n \mu(A_n)$ provided the $A_n \in \mathcal{A}$ are disjoint and $\bigcup A_n \in \mathcal{A}$) if and only if the following "continuity property" holds: for any decreasing sequence $(A_n : n \in \mathbb{N})$ of sets in \mathcal{A} , with $\bigcap_n A_n = \emptyset$, we have $\mu(A_n) \to 0$.

 $\mathbf{2}$

7. Let (E, \mathcal{E}, μ) be a finite measure space. Recall that for any sequence of sets $(A_n : n \in \mathbb{N})$ in \mathcal{E} , lim inf A_n is the subset of those $x \in E$ such that $x \in A_m$ for all large enough $m \in \mathbb{N}$, and lim sup A_n is the subset of those $x \in E$ such that x belongs to A_m for infinitely many $m \in \mathbb{N}$. Show that

 $\mu(\liminf A_n) \le \liminf \mu(A_n) \le \limsup \mu(A_n) \le \mu(\limsup A_n).$

Show that the first inequality remains true without the assumption that $\mu(E) < \infty$, but that the last inequality may then be false.

8. Let (X, \mathcal{A}) be a measurable space. Suppose that a function f on X has two representations

$$f = \sum_{k=1}^{m} a_k 1_{A_k} = \sum_{j=1}^{n} b_j 1_{B_j},$$

where each A_k and B_j belong to \mathcal{A} and $a_k, b_j \in [0, +\infty)$. Show that, for any measure μ ,

$$\sum_{k=1}^{m} a_k \mu(A_k) = \sum_{j=1}^{n} b_j \mu(B_j).$$

hint: for $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_m) \in \{0, 1\}^m$, define $A_{\varepsilon} = A_1^{\varepsilon_1} \cap \ldots \cap A_m^{\varepsilon_m}$ where $A_k^0 = A_k^c$ and $A_k^1 = A_k$. Define similarly B_{δ} for $\delta \in \{0, 1\}^n$. Then set $f_{\varepsilon, \delta} = \sum_{k=1}^m \varepsilon_k a_k$ if $A_{\varepsilon} \cap B_{\delta} \neq \emptyset$ and $f_{\varepsilon, \delta} = 0$ otherwise. Show then that

$$\sum_{k=1}^{m} a_k \mu(A_k) = \sum_{\varepsilon, \delta} f_{\varepsilon, \delta} \mu(A_\varepsilon \cap B_\delta)$$

9. Recall that the outer measure $m^*(E)$ of a subset E of \mathbb{R}^d is defined as

$$m^*(E) = \inf \sum_n m(B_n)$$

where the infimum is taken over all covers of E by countable unions $\bigcup_{n \in \mathbb{N}} B_n$ of boxes $B_n \subset \mathbb{R}^d$, and $m(B_n)$ is the product of the side lengths of the box B_n .

Let E be a subset of $X := [0, 1]^d$. In Lebesgue's 1901 original article, E is defined to be (Lebesgue) measurable if $m^*(E) + m^*(X \setminus E) = 1$. Show that this definition equivalent to the one given in class.

10. Let (E, \mathcal{E}, μ) be a measure space. Call a subset $N \subseteq E$ null if $N \subseteq B$ for some $B \in \mathcal{E}$ with $\mu(B) = 0$. Write \mathcal{N} for the set of null sets. Prove that the set of subsets $\mathcal{E}^{\mu} = \{A \cup N : A \in \mathcal{E}, N \in \mathcal{N}\}$ is a σ -algebra and show that μ has a well-defined and countably additive extension to \mathcal{E}^{μ} given by $\mu(A \cup N) = \mu(A)$. We call \mathcal{E}^{μ} the completion of \mathcal{E} with respect to μ . Suppose now that E is σ -finite and write μ^* for the outer measure associated to μ , as in the proof of Carathéodory's Extension Theorem. Show that \mathcal{E}^{μ} is exactly the set of μ^* -measurable sets.

11. Let $X = \mathbb{R}^d$ endowed with the σ -algebra \mathcal{B} of Borel sets. A Dirac mass at $x \in X$ is the measure δ_x on \mathcal{B} such that $\delta_x(A) = 1$ or 0 according as $x \in A$ or $x \notin A$. Let μ be a positive linear combination of a finite number of Dirac masses. What is the completion of \mathcal{B} with respect to μ ?

12. Let C_n denote the *n*th approximation to the Cantor set C: thus $C_0 = [0, 1]$, $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$, $C_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$, etc. and $C_n \downarrow C$ as $n \to \infty$. Show that C is Lebesgue measurable and has measure 0. Note that $[0, 1] \setminus C_n$ is a union of $2^n - 1$ open intervals I_1, \ldots, I_{2^n-1} read from left to right. Let $F_n : [0, 1] \to [0, 1]$ be the function equal to the constant $k/2^n$ on the k-th open interval, which is defined to be linear in between, continuous on [0, 1] and with $F_n(0) = 0, F_n(1) = 1$. Show that $F_n(x)$ converges uniformly on [0, 1] to a function F(x), which is differentiable with derivative 0 at Lebesgue almost every point in [0, 1].

Hint: express F_{n+1} *recursively in terms of* F_n *and use this relation to obtain a uniform estimate on* $F_{n+1} - F_n$.

13*. A subset $E \subset \mathbb{R}$ is called Jordan measurable if for every $\epsilon > 0$ there are two finite unions of intervals $A = \bigcup_{1}^{n} I_{i}$ and $B = \bigcup_{1}^{m} J_{j}$ such that $A \subset E \subset B$ and $m(B \setminus A) < \varepsilon$, where *m* is defined on finite disjoint unions of intervals as the total length of the intervals.

Give an example of a compact subset of [0, 1] that is not Jordan measurable.

14*. Recall that a subset $E \subset \mathbb{R}^d$ is called Jordan measurable if for every $\epsilon > 0$ there are two elementary sets $A = \bigcup_1^n B_i$ and $B = \bigcup_1^m B'_j$, where the B_i, B'_j are bounded boxes in \mathbb{R}^d , such that $A \subset E \subset B$ and $m(B \setminus A) < \varepsilon$, where *m* is the elementary measure defined on elementary sets.

Show that a bounded subset of \mathbb{R}^d is Jordan measurable if and only if it is Lebesgue measurable and its boundary has Lebesgue measure zero.

15*. Let a < b be real numbers and $f : [a,b] \to \mathbb{R}$ a function. We denote by \mathcal{P} a (marked) subdivision $a = t_0 < t_1 < \ldots < t_n = b$ of the interval [a,b] together with the choice of a point $x_i \in [t_{i-1}, t_i]$ for $i = 1, \ldots, n$. The quantity $\tau(\mathcal{P}) := \max_{1 \le i \le n} |t_i - t_{i-1}|$ is called the width of the subdivision. The Riemann sum $S_{\mathcal{P}}(f)$ is defined by:

$$S_{\mathcal{P}}(f) = \sum_{1 \le i \le n} f(x_i)(t_i - t_{i-1}).$$

One says that f is *Riemann integrable* if all Riemann sums, for varying \mathcal{P} , converge to the same limit as $\tau(\mathcal{P}) \to 0$. This limit is called the *Riemann integral* of f and is denoted by $\int_{[a,b]} f$.

Show that a subset $E \subset [a, b]$ is Jordan measurable if and only if the indicator function 1_E is Riemann integrable. Moreover in this case $m(E) = \int_{[a,b]} 1_E$.

16*. Let X be a set and \mathcal{F} be a family of subsets of X. Consider all Boolean algebras of subsets of X containing \mathcal{F} and let $\beta(\mathcal{F})$ be their intersection. Show that $\beta(\mathcal{F})$ is the Boolean algebra, whose subsets are finite unions of sets that are finite intersections of subsets F of X such that either F or its complement $X \setminus F$ lies in \mathcal{F} .

17*. Let X be a set. A monotone class \mathcal{M} on X is a family of subsets of X which is stable under increasing countable unions and decreasing countable intersections. Show that an intersection of monotone classes is again a monotone class. Let now \mathcal{B} be a Boolean algebra of subsets of X. Show the monotone class theorem: the smallest monotone class \mathcal{M} containing \mathcal{B} is the σ -algebra generated by \mathcal{B} .