Probability and Measure 1

Exercises marked with a star * are not examinable

1. Let E be a Lebesgue measurable subset of the real line with positive Lebesgue measure $m(E)$. Show that for every $\epsilon>0$ there exists an open interval (a, b) such that $m(E \cap(a, b))>(1-\epsilon)|a-b|$.
2. Show that the following sets of subsets of \mathbb{R} all generate the same σ-algebra:
(a) $\{(a, b): a<b\}$,
(b) $\{(a, b]: a<b\}$,
(c) $\{(-\infty, b]: b \in \mathbb{R}\}$.
3. Let E be a set and let \mathcal{S} be a set of σ-algebras on E. Define

$$
\mathcal{E}^{*}=\{A \subseteq E: A \in \mathcal{E} \quad \text { for all } \quad \mathcal{E} \in \mathcal{S}\}
$$

Show that \mathcal{E}^{*} is a σ-algebra on E. Show, on the other hand, by example, that the union of two σ-algebras on the same set need not be a σ-algebra.
4. Let E be a set and \mathcal{B} a Boolean algebra of subsets of E. Let $m: \mathcal{B} \rightarrow[0,+\infty]$ be such that $m(\varnothing)=0$. Suppose that m is finitely additive. Show that m is countably additive if and only if it is countably subadditive.
5. Let E be a set and \mathcal{E} a family of subsets of E, which contains E and \varnothing, and is stable under complementation, under countable disjoint unions and under finite intersections. Show that \mathcal{E} is a σ-algebra.
6. Let X be a set and \mathcal{A} a Boolean algebra of subsets of X. Let $\mu: \mathcal{A} \rightarrow[0,+\infty)$ be a finitely additive measure. Show that μ is countably additive on \mathcal{A} (i.e. $\mu\left(\bigcup A_{n}\right)=\sum_{n} \mu\left(A_{n}\right)$ provided the $A_{n} \in \mathcal{A}$ are disjoint and $\bigcup A_{n} \in \mathcal{A}$) if and only if the following "continuity property" holds: for any decreasing sequence $\left(A_{n}: n \in \mathbb{N}\right)$ of sets in \mathcal{A}, with $\cap_{n} A_{n}=\emptyset$, we have $\mu\left(A_{n}\right) \rightarrow 0$.
7. Let (E, \mathcal{E}, μ) be a finite measure space. Recall that for any sequence of sets $\left(A_{n}: n \in \mathbb{N}\right)$ in \mathcal{E}, $\lim \inf A_{n}$ is the subset of those $x \in E$ such that $x \in A_{m}$ for all large enough $m \in \mathbb{N}$, and $\lim \sup A_{n}$ is the subset of those $x \in E$ such that x belongs to A_{m} for infinitely many $m \in \mathbb{N}$. Show that

$$
\mu\left(\liminf A_{n}\right) \leq \liminf \mu\left(A_{n}\right) \leq \lim \sup \mu\left(A_{n}\right) \leq \mu\left(\lim \sup A_{n}\right) .
$$

Show that the first inequality remains true without the assumption that $\mu(E)<\infty$, but that the last inequality may then be false.
8. Let (X, \mathcal{A}) be a measurable space. Suppose that a function f on X has two representations

$$
f=\sum_{k=1}^{m} a_{k} 1_{A_{k}}=\sum_{j=1}^{n} b_{j} 1_{B_{j}},
$$

where each A_{k} and B_{j} belong to \mathcal{A} and $a_{k}, b_{j} \in[0,+\infty)$. Show that, for any measure μ,

$$
\sum_{k=1}^{m} a_{k} \mu\left(A_{k}\right)=\sum_{j=1}^{n} b_{j} \mu\left(B_{j}\right) .
$$

hint: for $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in\{0,1\}^{m}$, define $A_{\varepsilon}=A_{1}^{\varepsilon_{1}} \cap \ldots \cap A_{m}^{\varepsilon_{m}}$ where $A_{k}^{0}=A_{k}^{c}$ and $A_{k}^{1}=A_{k}$. Define similarly B_{δ} for $\delta \in\{0,1\}^{n}$. Then set $f_{\varepsilon, \delta}=\sum_{k=1}^{m} \varepsilon_{k} a_{k}$ if $A_{\varepsilon} \cap B_{\delta} \neq \emptyset$ and $f_{\varepsilon, \delta}=0$ otherwise. Show then that

$$
\sum_{k=1}^{m} a_{k} \mu\left(A_{k}\right)=\sum_{\varepsilon, \delta} f_{\varepsilon, \delta} \mu\left(A_{\varepsilon} \cap B_{\delta}\right)
$$

9. Recall that the outer measure $m^{*}(E)$ of a subset E of \mathbb{R}^{d} is defined as

$$
m^{*}(E)=\inf \sum_{n} m\left(B_{n}\right)
$$

where the infimum is taken over all covers of E by countable unions $\bigcup_{n \in \mathbb{N}} B_{n}$ of boxes $B_{n} \subset \mathbb{R}^{d}$, and $m\left(B_{n}\right)$ is the product of the side lengths of the box B_{n}.

Let E be a subset of $X:=[0,1]^{d}$. In Lebesgue's 1901 original article, E is defined to be (Lebesgue) measurable if $m^{*}(E)+m^{*}(X \backslash E)=1$. Show that this definition equivalent to the one given in class.
10. Let (E, \mathcal{E}, μ) be a measure space. Call a subset $N \subseteq E$ null if $N \subseteq B$ for some $B \in \mathcal{E}$ with $\mu(B)=0$. Write \mathcal{N} for the set of null sets. Prove that the set of subsets $\mathcal{E}^{\mu}=\{A \cup N: A \in$ $\mathcal{E}, N \in \mathcal{N}\}$ is a σ-algebra and show that μ has a well-defined and countably additive extension to \mathcal{E}^{μ} given by $\mu(A \cup N)=\mu(A)$. We call \mathcal{E}^{μ} the completion of \mathcal{E} with respect to μ. Suppose now that E is σ-finite and write μ^{*} for the outer measure associated to μ, as in the proof of Carathéodory's Extension Theorem. Show that \mathcal{E}^{μ} is exactly the set of μ^{*}-measurable sets.
11. Let $X=\mathbb{R}^{d}$ endowed with the σ-algebra \mathcal{B} of Borel sets. A Dirac mass at $x \in X$ is the measure δ_{x} on \mathcal{B} such that $\delta_{x}(A)=1$ or 0 according as $x \in A$ or $x \notin A$. Let μ be a positive linear combination of a finite number of Dirac masses. What is the completion of \mathcal{B} with respect to μ ?
12. Let C_{n} denote the nth approximation to the Cantor set C : thus $C_{0}=[0,1], C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$, $C_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right]$, etc. and $C_{n} \downarrow C$ as $n \rightarrow \infty$. Show that C is Lebesgue measurable and has measure 0 . Note that $[0,1] \backslash C_{n}$ is a union of $2^{n}-1$ open intervals $I_{1}, \ldots, I_{2^{n}-1}$ read from left to right. Let $F_{n}:[0,1] \rightarrow[0,1]$ be the function equal to the constant $k / 2^{n}$ on the k-th open interval, which is defined to be linear in between, continuous on $[0,1]$ and with $F_{n}(0)=0, F_{n}(1)=1$. Show that $F_{n}(x)$ converges uniformly on $[0,1]$ to a function $F(x)$, which is differentiable with derivative 0 at Lebesgue almost every point in $[0,1]$.

Hint: express F_{n+1} recursively in terms of F_{n} and use this relation to obtain a uniform estimate on $F_{n+1}-F_{n}$.

13*. A subset $E \subset \mathbb{R}$ is called Jordan measurable if for every $\epsilon>0$ there are two finite unions of intervals $A=\bigcup_{1}^{n} I_{i}$ and $B=\bigcup_{1}^{m} J_{j}$ such that $A \subset E \subset B$ and $m(B \backslash A)<\varepsilon$, where m is defined on finite disjoint unions of intervals as the total length of the intervals.

Give an example of a compact subset of $[0,1]$ that is not Jordan measurable.

14*. Recall that a subset $E \subset \mathbb{R}^{d}$ is called Jordan measurable if for every $\epsilon>0$ there are two elementary sets $A=\bigcup_{1}^{n} B_{i}$ and $B=\bigcup_{1}^{m} B_{j}^{\prime}$, where the B_{i}, B_{j}^{\prime} are bounded boxes in \mathbb{R}^{d}, such that $A \subset E \subset B$ and $m(B \backslash A)<\varepsilon$, where m is the elementary measure defined on elementary sets.

Show that a bounded subset of \mathbb{R}^{d} is Jordan measurable if and only if it is Lebesgue measurable and its boundary has Lebesgue measure zero.

15*. Let $a<b$ be real numbers and $f:[a, b] \rightarrow \mathbb{R}$ a function. We denote by \mathcal{P} a (marked) subdivision $a=t_{0}<t_{1}<\ldots<t_{n}=b$ of the interval $[a, b]$ together with the choice of a point $x_{i} \in\left[t_{i-1}, t_{i}\right]$ for $i=1, \ldots, n$. The quantity $\tau(\mathcal{P}):=\max _{1 \leq i \leq n}\left|t_{i}-t_{i-1}\right|$ is called the width of the subdivision. The Riemann sum $S_{\mathcal{P}}(f)$ is defined by:

$$
S_{\mathcal{P}}(f)=\sum_{1 \leq i \leq n} f\left(x_{i}\right)\left(t_{i}-t_{i-1}\right) .
$$

One says that f is Riemann integrable if all Riemann sums, for varying \mathcal{P}, converge to the same limit as $\tau(\mathcal{P}) \rightarrow 0$. This limit is called the Riemann integral of f and is denoted by $\int_{[a, b]} f$.

Show that a subset $E \subset[a, b]$ is Jordan measurable if and only if the indicator function 1_{E} is Riemann integrable. Moreover in this case $m(E)=\int_{[a, b]} 1_{E}$.

16*. Let X be a set and \mathcal{F} be a family of subsets of X. Consider all Boolean algebras of subsets of X containing \mathcal{F} and let $\beta(\mathcal{F})$ be their intersection. Show that $\beta(\mathcal{F})$ is the Boolean algebra, whose subsets are finite unions of sets that are finite intersections of subsets F of X such that either F or its complement $X \backslash F$ lies in \mathcal{F}.
$\mathbf{1 7}^{*}$. Let X be a set. A monotone class \mathcal{M} on X is a family of subsets of X which is stable under increasing countable unions and decreasing countable intersections. Show that an intersection of monotone classes is again a monotone class. Let now \mathcal{B} be a Boolean algebra of subsets of X. Show the monotone class theorem: the smallest monotone class \mathcal{M} containing \mathcal{B} is the σ-algebra generated by \mathcal{B}.

