E. Breuillard Michaelmas 2019
Probability and Measure 1

Ezxercises marked with a star * are not examinable

1. Let E be a Lebesgue measurable subset of the real line with positive Lebesgue measure m(E).
Show that for every € > 0 there exists an open interval (a, b) such that m(EN(a,b)) > (1—¢)la—b|.

2. Show that the following sets of subsets of R all generate the same o-algebra:
(a) {(aab) ta< b}v (b) {(a7 b] fa< b}7 (C) {(_Oo7b] tbe R}

3. Let E be a set and let S be a set of g-algebras on E. Define
E'={ACE:Ac& foral €&e€S}.

Show that £* is a g-algebra on E. Show, on the other hand, by example, that the union of two
o-algebras on the same set need not be a o-algebra.

4. Let E be a set and B a Boolean algebra of subsets of E. Let m : B — [0,400] be such that
m(@) = 0. Suppose that m is finitely additive. Show that m is countably additive if and only if it
is countably subadditive.

5. Let E be a set and £ a family of subsets of E, which contains F and &, and is stable under
complementation, under countable disjoint unions and under finite intersections. Show that £ is a
o-algebra.

6. Let X be a set and A a Boolean algebra of subsets of X. Let u: A — [0,+00) be a finitely
additive measure. Show that u is countably additive on A (i.e. p(lJAn) =2, 1(An) provided the
A, € A are disjoint and | J A, € A) if and only if the following “continuity property” holds: for
any decreasing sequence (A4, : n € N) of sets in A, with N, A, = 0, we have u(4,) — 0.
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7. Let (E,&, 1) be a finite measure space. Recall that for any sequence of sets (4, : n € N) in &,
liminf A,, is the subset of those z € E such that z € A,, for all large enough m € N, and limsup 4,
is the subset of those x € F such that = belongs to A,, for infinitely many m € N. Show that

p(liminf A,,) < liminf u(A,) < limsup u(A,) < p(limsup A,).

Show that the first inequality remains true without the assumption that pu(FE) < oo, but that the
last inequality may then be false.

8. Let (X,.4) be a measurable space. Suppose that a function f on X has two representations

m n
=Y arla, =) bilp,
k=1 J=1

where each Aj, and B; belong to A and ay, b; € [0, +00). Show that, for any measure y,

> apu(Ar) = biu(B)).
=1 =1

hint: for € = (e1,...,&m) € {0,1}™, define A, = A7' N...N A" where A) = A§ and A} = Ay.
Define similarly Bs for § € {0,1}". Then set f.5 =Y ;- exay if Ac-NBs # () and f. s = 0 otherwise.
Show then that

D aru(Ar) =Y fosu(Ac 0 By)
k=1

£,0

9. Recall that the outer measure m*(E) of a subset E of R? is defined as
m*(E) = inf Z m(By,)

where the infimum is taken over all covers of E by countable unions (J,,cy Bn of boxes B, C R?,
and m(DB,,) is the product of the side lengths of the box B,.

Let E be asubset of X := [0, 1]%. In Lebesgue’s 1901 original article, £ is defined to be (Lebesgue)
measurable if m*(E) + m*(X \ £) = 1. Show that this definition equivalent to the one given in
class.

10. Let (E, &, 1) be a measure space. Call a subset N C E null if N C B for some B € £ with
w(B) = 0. Write NV for the set of null sets. Prove that the set of subsets E# = {AUN : A €
E,N € N} is a o-algebra and show that p has a well-defined and countably additive extension to
EF given by u(AUN) = p(A). We call E# the completion of £ with respect to p. Suppose now that
E is o-finite and write u* for the outer measure associated to u, as in the proof of Carathéodory’s
Extension Theorem. Show that £# is exactly the set of u*-measurable sets.
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11. Let X = R? endowed with the o-algebra B of Borel sets. A Dirac mass at = € X is the
measure 6, on B such that 6;(A) =1 or 0 according as z € A or x ¢ A. Let p be a positive linear
combination of a finite number of Dirac masses. What is the completion of B with respect to pu ?

12. Let C,, denote the nth approximation to the Cantor set C: thus Cy = [0,1], C1 = [0, 3] U3, 1],
Cy=10,3]U[2,3]U[3,5]U[5,1], etc. and Cp, | C as n — oo. Show that C is Lebesgue measurable
and has measure 0. Note that [0, 1]\ C), is a union of 2" —1 open intervals I, . .., [on_1 read from left
to right. Let F,, : [0,1] — [0, 1] be the function equal to the constant k/2" on the k-th open interval,
which is defined to be linear in between, continuous on [0, 1] and with F,(0) = 0, F,,(1) = 1. Show
that F,,(z) converges uniformly on [0, 1] to a function F'(z), which is differentiable with derivative

0 at Lebesgue almost every point in [0, 1].

Hint: express Fy 1 recursively in terms of F,, and use this relation to obtain a uniform estimate
on Fni1 — F,.

13*. A subset F C R is called Jordan measurable if for every € > 0 there are two finite unions of
intervals A = (J} I; and B = |J|" J; such that A C E C B and m(B \ A) < ¢, where m is defined
on finite disjoint unions of intervals as the total length of the intervals.

Give an example of a compact subset of [0, 1] that is not Jordan measurable.

14%*. Recall that a subset £ C R? is called Jordan measurable if for every e > 0 there are two

elementary sets A = (J] B; and B = |J" B;, where the B;, B} are bounded boxes in R%, such that

ACEC Band m(B\ A) < ¢, where m is the elementary measure defined on elementary sets.
Show that a bounded subset of R? is Jordan measurable if and only if it is Lebesgue measurable

and its boundary has Lebesgue measure zero.
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15*. Let a < b be real numbers and f : [a,b] — R a function. We denote by P a (marked)
subdivision @ = tg < t; < ... < t, = b of the interval [a,b] together with the choice of a point
x; € [ti—1,t;] for i = 1,...,n. The quantity 7(P) := maxi<i<p |t; — t;—1| is called the width of the
subdivision. The Riemann sum Sp(f) is defined by:

Sp(f) = Z f@i)(ti — ti1).
1<i<n
One says that f is Riemann integrable if all Riemann sums, for varying P, converge to the same
limit as 7(P) — 0. This limit is called the Riemann integral of f and is denoted by f[a ) f.

Show that a subset E C [a,b] is Jordan measurable if and only if the indicator function 1g is
Riemann integrable. Moreover in this case m(E) = f[a p e

16*. Let X be a set and F be a family of subsets of X. Consider all Boolean algebras of subsets of
X containing F and let S(F) be their intersection. Show that 5(F) is the Boolean algebra, whose
subsets are finite unions of sets that are finite intersections of subsets F' of X such that either F
or its complement X \ F lies in F.

17*. Let X be a set. A monotone class M on X is a family of subsets of X which is stable under
increasing countable unions and decreasing countable intersections. Show that an intersection of
monotone classes is again a monotone class. Let now B be a Boolean algebra of subsets of X.
Show the monotone class theorem: the smallest monotone class M containing B is the o-algebra
generated by B.



