Probability and Measure 3

Exercises marked with a star * are not examinable

1. A coin is tossed infinitely often, making an infinite sequence $\omega_{1}, \ldots, \omega_{n}, \ldots$ of heads or tails, i.e. $\omega_{i} \in\{H, T\}$. Show that every finite sequence of heads and tails (such as HHTTTHT) occurs infinitely often almost surely.
2. (Weak law of large numbers) Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of real random variables, such that $\mathbb{E}\left(\left|X_{n}\right|^{2}\right)<\infty$ for each n and $\sum_{k=1}^{n} \mathbb{E}\left(X_{k}^{2}\right)=o\left(n^{2}\right)$ as $n \rightarrow+\infty$. Assume further that $\mathbb{E}\left(X_{n}\right)=0$ for all n and that the variables are pairwise uncorrelated, i.e. $\mathbb{E}\left(X_{i} X_{j}\right)=0$ if $i \neq j$. Show that $\frac{1}{n} \sum_{k=1}^{n} X_{k}$ converges to 0 in probability.
3. Let $\mu,\left\{\mu_{n}\right\}_{n \geq 1}$ be Borel probability measures on \mathbb{R} with distribution functions F and $\left\{F_{n}\right\}_{n \geq 1}$ respectively. Show that μ_{n} converges weakly to μ if and only if $F_{n}(x)$ converges to $F(x)$ for every real x, where F is continuous, and also if and only if $F_{n}(x)$ converges to $F(x)$ for Lebesgue almost every $x \in \mathbb{R}$.
4. (de Moivre-Laplace) Let X_{n} be a binomial random variable $B\left(n, \frac{1}{2}\right)$, e.g. X_{n} is the number of heads obtained after tossing a fair coin n times. Use the Stirling formula ($n!e^{n} n^{-n-\frac{1}{2}} \rightarrow \sqrt{2 \pi}$) to show that

$$
\sqrt{n} \mathbb{P}\left(X_{n}=k\right)=2 e^{-2(k-n / 2)^{2} / n} / \sqrt{2 \pi}+o(1)
$$

as $n \rightarrow+\infty$ uniformly over k when $(k-n / 2) / \sqrt{n}$ remains bounded. Deduce that $\left(X_{n}-\mathbb{E}\left(X_{n}\right)\right) / \sqrt{n}$ converges in distribution to a gaussian $\mathcal{N}\left(0, \sigma^{2}\right)$ with $\sigma^{2}=\frac{1}{4}$.
5. Let ($X_{n}: n \in \mathbb{N}$) be a sequence of independent random variables, such that $\mathbb{E}\left(X_{n}\right)=\mu$ and $\mathbb{E}\left(X_{n}^{4}\right) \leq M$ for all n, for some constants $\mu \in \mathbb{R}$ and $M<\infty$. Set $P_{n}=X_{1} X_{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$. Show that P_{n} / n converges a.s. as $n \rightarrow \infty$ and identify the limit.
6. Let $\mu,\left\{\mu_{n}\right\}_{n \geq 1}$ be Borel probability measures on \mathbb{R} and assume that μ_{n} converges weakly to μ. Show that one can find some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and random variables $X,\left\{X_{n}\right\}_{n \geq 1}$ such that X has law μ, X_{n} has law μ_{n} and $X_{n} \rightarrow X$ almost surely as $n \rightarrow+\infty$. Can the X_{n} be chosen to be independent?
7. Let $\left(X_{n}: n \in \mathbb{N}\right)$ be an identically distributed sequence with $\mathbb{E}\left(\left|X_{1}\right|^{2}\right)<\infty$. Show that $n \mathbb{P}\left(\left|X_{1}\right|>\right.$ $\varepsilon \sqrt{n}) \rightarrow 0$ as $n \rightarrow \infty$, for all $\varepsilon>0$. Deduce that $n^{-1 / 2} \max _{k \leq n}\left|X_{k}\right| \rightarrow 0$ in probability. And that

$$
\mathbb{E}\left(\max _{k \leq n}\left|X_{k}\right|\right) / \sqrt{n} \rightarrow 0 \text { as } \quad n \rightarrow \infty
$$

8. Find a uniformly integrable sequence of random variables ($X_{n}: n \in \mathbb{N}$) such that both $X_{n} \rightarrow 0$ a.s. and $\mathbb{E}\left(\sup _{n}\left|X_{n}\right|\right)=\infty$.
9. Let $\left\{A_{n}\right\}_{n \geq 1}$ be a sequence of events, which are pairwise weakly independent in the sense that there is some $C \geq 1$ such that $\mathbb{P}\left(A_{i} \cap A_{j}\right) \leq C \mathbb{P}\left(A_{i}\right) \mathbb{P}\left(A_{j}\right)$ for every two distinct $i \neq j$. Assume that $\sum_{n \geq 1} \mathbb{P}\left(A_{n}\right)=+\infty$. Show that $\mathbb{P}\left(\lim \sup A_{n}\right)>0$.

Hint: Let $S_{n}=\sum_{k=1}^{n} 1_{A_{k}}$ and show that $Y_{n}=\frac{S_{n}}{\mathbb{E}\left(S_{n}\right)}$ is bounded in \mathbb{L}^{2} hence uniformly integrable.
10. Let X be a random variable and let $1 \leq p<\infty$. Show that, if $X \in L^{p}(\mathbb{P})$, then $\mathbb{P}(|X| \geq \lambda)=$ $O\left(\lambda^{-p}\right)$ as $l \rightarrow \infty$. Prove the identity

$$
\mathbb{E}\left(|X|^{p}\right)=\int_{0}^{\infty} p \lambda^{p-1} \mathbb{P}(|X| \geq \lambda) d \lambda
$$

and deduce that, for all $q>p$, if $\mathbb{P}(|X| \geq \lambda)=O\left(\lambda^{-q}\right)$ as $l \rightarrow \infty$, then $X \in L^{p}(\mathbb{P})$.
11. A stepfunction $f: \mathbb{R} \rightarrow \mathbb{R}$ is any finite linear combination of indicator functions of finite intervals. Show that the set of stepfunctions \mathcal{I} is dense in $L^{p}(\mathbb{R})$ for all $p \in[1, \infty)$: that is, for all $f \in L^{p}(\mathbb{R})$ and all $\varepsilon>0$ there exists $g \in \mathcal{I}$ such that $\|f-g\|_{p}<\varepsilon$. Deduce that the set of continuous functions of compact support is also dense in $L^{p}(\mathbb{R})$ for all $p \in[1, \infty)$.
12. Define a function f on \mathbb{R} by setting $f(x)=\exp (-1 / x)$ for $x>0$ and $f(x)=0$ otherwise. Show that f is C^{∞}. Now let $\phi(x)=f(x) f(1-x)$ and $\psi(x)=c^{-1} \int_{-\infty}^{x} \phi(t) d t$, where $c=\int_{\mathbb{R}} \phi(t) d t$. Check that ψ is $C^{\infty}, \psi(x)=0$ if $x \leq 0, \psi(x)=1$ if $x \geq 1$ and ψ is non-decreasing. Use ψ to build, for each interval $I=[a, b]$ and $\epsilon>0$ a C^{∞}-function $\psi_{I, \epsilon}$ on \mathbb{R} such that

$$
1_{[a, b]} \leq \psi_{I, \epsilon} \leq 1_{[a-\epsilon, b+\epsilon]} .
$$

Use this to construct for each compact set $K \subset \mathbb{R}^{d}$ and each open set $U \supset K$ a C^{∞}-function $\psi_{K, U}$ on \mathbb{R}^{d} such that

$$
1_{K} \leq \psi_{K, U} \leq 1_{U}
$$

Deduce that the smooth functions of compact support $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ form a dense subspace of $L^{p}\left(\mathbb{R}^{d}\right)$ for any $p \in[1,+\infty)$.
13.*. Let μ be a Borel probability measure on \mathbb{R}^{d}. Show that there is a sequence of finitely supported probability measures μ_{n} on \mathbb{R}^{d}, which converges weakly to μ.
14.*. Let μ and $\left\{\mu_{n}\right\}_{n \geq 1}$ be probability measures on \mathbb{R}^{d}. Show that the following are equivalent:
(1) μ_{n} converges weakly to μ as $n \rightarrow \infty$.
(2) there is a countable dense (for uniform convergence) sequence $\left(f_{i}\right)_{i \geq 1}$ in the space of continuous and bounded functions on \mathbb{R}^{d}, such that $\int f_{i} d \mu_{n} \rightarrow \int f_{i} d \mu$ as $n \rightarrow \infty$, for each i.
(3) for every Borel set A such that $\mu(\partial A)=0$ we have $\mu_{n}(A) \rightarrow \mu(A)$ as $n \rightarrow \infty$ (here ∂A is the boundary of A, i.e. the points in the closure of A that are not in the interior of A.)
15.*. [Existence of product measure on infinite products] Let $\left\{\left(\Omega_{i}, \mathcal{F}_{i}, \mu_{i}\right)\right\}_{i \geq 1}$ be a sequence of probability spaces. Let $\Omega=\prod_{i \geq 1} \Omega_{i}$. Let \mathcal{C} be the Boolean algebra of cylinder sets, namely subsets of the form $B:=A \times \prod_{i>n} \Omega_{i}$, where $A \subset \prod_{i=1}^{n} \Omega_{i}$ belongs to the product σ-algebra $\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$. Finally let $\mathcal{F}=\sigma(\mathcal{C})$. Show that there exists a unique probability measure μ on (Ω, \mathcal{F}) such that

$$
\mu(B)=\mu_{1} \otimes \ldots \otimes \mu_{n}(A),
$$

for every cylinder set $B=A \times \prod_{i>n} \Omega_{i}$ as above.
Hint: check that μ is well-defined and finitely additive on \mathcal{C}. Then apply Caratheodory's extension theorem. The main point is to check σ-additivity: for this use the equivalent continuity axiom (ExSh 1, ex. 6). Given $B_{n+1} \subset B_{n} \in \mathcal{C}$ with $\mu\left(B_{n}\right)>\epsilon>0$ for all n, show that there is an $\omega_{1} \in \Omega_{1}$ whose slices $\left(B_{n}\right)_{\omega_{1}}:=\left\{\omega=\left(\omega_{i}\right)_{i \geq 2} \in \prod_{i \geq 2} \Omega_{i}:\left(\omega_{1}, \omega\right) \in B_{n}\right\}$ have $\mu^{(1)}\left(\left(B_{n}\right)_{\omega_{1}}\right)>\epsilon / 2$ for all n, where $\mu^{(1)}$ is the projection of μ onto $\prod_{i \geq 2} \Omega_{i}$. Iterate and conclude that $\cap_{n} B_{n} \neq \varnothing$.

