Probability and Measure 2

Exercises marked with a star * are not examinable

1. Let (E, \mathcal{E}, μ) be a measure space. Prove Scheffé's lemma : Let $\left(f_{n}: n \in \mathbb{N}\right)$ be a sequence of integrable functions and suppose that $f_{n} \rightarrow f$ a.e. for some integrable function f. If $\mu\left(\left|f_{n}\right|\right) \rightarrow$ $\mu(|f|)$, then $\mu\left(\left|f_{n}-f\right|\right) \rightarrow 0$.
2. Let (E, \mathcal{E}) and (G, \mathcal{G}) be measurable spaces and let $f: E \rightarrow G$ be a measurable function. Given a measure μ on (E, \mathcal{E}), the image measure $\nu:=f_{*} \mu$ on (G, \mathcal{G}) is defined by

$$
\nu(A)=\mu\left(f^{-1}(A)\right)
$$

for all $A \in \mathcal{G}$. Show that ν is indeed a measure and that $\nu(g)=\mu(g \circ f)$ for all non-negative measurable functions g on G. In the case when $E=G=\mathbb{R}^{d}$ endowed with Lebesgue's measure m and $f \in G L_{d}(\mathbb{R})$ is an invertible linear map, show that $f_{*} m=\frac{1}{|\operatorname{det} f|} m$.
3. Let f be a real-valued integrable function on a measure space (X, \mathcal{A}, μ). Let \mathcal{F} be a family of subsets from \mathcal{A}, which is stable under intersection, contains X and generates the σ-algebra \mathcal{A}. Suppose that $\mu\left(f 1_{F}\right)=0$ for all subsets $F \in \mathcal{F}$. Show that $f=0 \mu$-a.e.
4. Let μ and ν be finite Borel measures on \mathbb{R}. Let f be a continuous bounded function on \mathbb{R}. Show that f is integrable with respect to μ and ν. Show further that, if $\mu(f)=\nu(f)$ for all such f, then $\mu=\nu$.
5. Show that the function $\sin x / x$ is not Lebesgue integrable over $[1, \infty)$ but that integral $\int_{1}^{N}(\sin x / x) d x$ converges as $N \rightarrow \infty$.

Show that the function $f(x):=x^{2} \sin \left(\frac{1}{x^{2}}\right)$ is continuous and differentiable at every point of $[0,1]$ but its derivative is not Lebesgue integrable on this interval.
6. Show that, as $n \rightarrow \infty$,

$$
\int_{0}^{\infty} \sin \left(e^{x}\right) /\left(1+n x^{2}\right) d x \rightarrow 0 \quad \text { and } \quad \int_{0}^{1}(n \cos x) /\left(1+n^{2} x^{\frac{3}{2}}\right) d x \rightarrow 0
$$

7. Show that the product of the Borel σ-algebras of $\mathbb{R}^{d_{1}}$ and $\mathbb{R}^{d_{2}}$ is the Borel σ-algebra of $\mathbb{R}^{d_{1}+d_{2}}$. Give an example to show that this is no longer the case if the word Borel is replaced by Lebesgue.
8. Show that the following condition implies that random variables X and Y are independent: $\mathbb{P}(X \leq x, Y \leq y)=\mathbb{P}(X \leq x) \mathbb{P}(Y \leq y)$ for all $x, y \in \mathbb{R}$.
9. Let $\left(A_{n}: n \in \mathbb{N}\right)$ be a sequence of events, with $\mathbb{P}\left(A_{n}\right)=1 / n^{2}$ for all n. Set $X_{n}=n^{2} 1_{A_{n}}-1$ and set $\bar{X}_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$. Show that $\mathbb{E}\left(\bar{X}_{n}\right)=0$ for all n, but that $\bar{X}_{n} \rightarrow-1$ almost surely as $n \rightarrow \infty$.
10. The zeta function is defined for $s>1$ by $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$. Let X and Y be independent integer valued random variables with

$$
\mathbb{P}(X=n)=\mathbb{P}(Y=n)=n^{-s} / \zeta(s)
$$

Write A_{n} for the event that n divides X. Show that the events ($A_{p}: p$ prime) are independent and deduce Euler's formula

$$
\frac{1}{\zeta(s)}=\prod_{p}\left(1-\frac{1}{p^{s}}\right) .
$$

Show also that $\mathbb{P}(X$ is square-free $)=1 / \zeta(2 s)$. Write H for the highest common factor of X and Y. Show finally that $\mathbb{P}(H=n)=n^{-2 s} / \zeta(2 s)$.
11. Let μ and ν be probability measures on (E, \mathcal{E}) and let $f: E \rightarrow[0, R]$ be a measurable function. Suppose that $\nu(A)=\mu\left(f 1_{A}\right)$ for all $A \in \mathcal{E}$. Let ($X_{n}: n \in \mathbb{N}$) be a sequence of i.i.d. random variables in E with law μ and let ($U_{n}: n \in \mathbb{N}$) be an independent sequence of i.i.d. random variables with uniform law in $[0,1]$. Set

$$
T=\min \left\{n \in \mathbb{N}: R U_{n} \leq f\left(X_{n}\right)\right\}, \text { and } Y=X_{T}
$$

Show that Y has law ν. (This justifies simulation by rejection sampling.)
12.*. Let X be a second countable locally compact topological space (if you do not know what this means, assume $X=\mathbb{R}^{d}$). Let μ be a Radon measure on X (i.e. a measure on the Borel σ-algebra $\mathcal{B}(X)$ of X, which gives finite measure to every compact subset). Show that for every Borel subset $E \subset X$ with $\mu(E)$ finite, and for every $\epsilon>0$ there is a compact subset K and an open subset U such that $K \subset E \subset U \subset X$ and

$$
\begin{equation*}
\mu(U / K) \leq \epsilon . \tag{*}
\end{equation*}
$$

Deduce that μ is regular, i.e. for every Borel subset E,

$$
\mu(E)=\sup \{\mu(K) ; E \supset K \text { compact }\}=\inf \{\mu(U) ; E \subset U \text { open }\} .
$$

Let \mathcal{L}_{μ} be the completion of $\mathcal{B}(X)$ with respect to μ. Show further that a subset $E \subset X$ is \mathcal{L}_{μ}-measurable if and only if for every $\epsilon>0$ there is a compact subset K and an open subset U of X such that $K \subset E \subset U$ and $\mu(U / E)<\epsilon$.
14.*. Recall that a bounded function $f:[0,1] \rightarrow \mathbb{R}$ is called Riemann integrable if all its Riemann sums converge. Let \mathcal{P}_{n} be the level- n dyadic partition of $[0,1)$ given by all intervals of the form $I_{k, n}=\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$ for $k=0, \ldots, 2^{n}-1$, and let g_{n} be the step function equal to $\inf _{I_{k, n}} f$ on $I_{k, n}$ and f_{n} the step function equal to $\sup _{I_{k, n}} f$ on $I_{k, n}$.

Show that f is Riemann integrable if and only if $\int_{[0,1]} f_{n}-\int_{[0,1]} g_{n}$ tends to 0 as n tends to infinity (where the measure on $[0,1]$ is Lebesgue measure).

Let \mathcal{D} be the set of all dyadic numbers (i.e. numbers of the form $\frac{k}{2^{n}}$ for some k, n). Show that if $x \in[0,1] \backslash \mathcal{D}$, then f is continuous at x if and only if $\lim _{n \rightarrow+\infty} f_{n}(x)-g_{n}(x)=0$.

Deduce that f is Riemann integrable if and only if the set of discontinuity of f is of Lebesgue measure zero.
15.*. Give an example of a homeomorphism ϕ of $[0,1]$ and a Lebesgue measurable subset $E \subset[0,1]$ such that $\phi^{-1}(E)$ is not Lebesgue measurable. [Hint: use a devil's staircase construction similar to Exercise 12 in Example Sheet 1, together with Vitali's counter-example]

