E. Breuillard Michaelmas 2018

Probability and Measure 1

Exercises marked with a star * are not examinable

1. Let E be a Lebesgue measurable subset of the real line with positive Lebesgue measure $m(E)$. Show that for every $\epsilon > 0$ there exists an open interval (a, b) such that $m(E \cap (a, b)) > (1 - \epsilon)|a - b|$.

2. Show that the following sets of subsets of R all generate the same σ -algebra: (a) $\{(a, b) : a < b\}, \{(b) \{(a, b) : a < b\}, \{(c) \{(-\infty, b] : b \in \mathbb{R}\}.$

3. Let E be a set and let S be a set of σ -algebras on E. Define

$$
\mathcal{E}^* = \{ A \subseteq E : A \in \mathcal{E} \quad \text{for all} \quad \mathcal{E} \in \mathcal{S} \}.
$$

Show that \mathcal{E}^* is a σ -algebra on E. Show, on the other hand, by example, that the union of two σ-algebras on the same set need not be a σ-algebra.

4. Let E be a set and B a Boolean algebra of subsets of E. Let $m : \mathcal{B} \to [0, +\infty]$ be such that $m(\emptyset) = 0$. Show that if m is countably additive, then m is monotone and countably subadditive.

5. Let E be a set and $\mathcal E$ a family of subsets of E, which contains E and \varnothing , and is stable under complementation, under countable disjoint unions and under finite intersections. Show that $\mathcal E$ is a σ -algebra.

6. Let X be a set and A a Boolean algebra of subsets of X. Let $\mu : A \to [0, +\infty)$ be a finitely additive measure. Show that μ is countably additive on \mathcal{A} (i.e. $\mu(\bigcup A_n) = \sum_n \mu(A_n)$ provided the $A_n \in \mathcal{A}$ are disjoint and $\bigcup A_n \in \mathcal{A}$) if and only if the following "continuity condition" holds: for any decreasing sequence $(A_n : n \in \mathbb{N})$ of sets in A, with $\cap_n A_n = \emptyset$, we have $\mu(A_n) \to 0$.

2

7. Let (E, \mathcal{E}, μ) be a finite measure space. Recall that for any sequence of sets $(A_n : n \in \mathbb{N})$ in $\mathcal{E},$ lim inf A_n is the subset of those $x \in E$ such that $x \in A_m$ for all large enough $m \in \mathbb{N}$, and lim sup A_n is the subset of those $x \in E$ such that x belongs to A_m for infinitely many $m \in \mathbb{N}$. Show that

 $\mu(\liminf A_n) \leq \liminf \mu(A_n) \leq \limsup \mu(A_n) \leq \mu(\limsup A_n).$

Show that the first inequality remains true without the assumption that $\mu(E) < \infty$, but that the last inequality may then be false.

8. Let (X, \mathcal{A}) be a measurable space. Suppose that a function f on X has two representations

$$
f = \sum_{k=1}^{m} a_k 1_{A_k} = \sum_{j=1}^{n} b_j 1_{B_j},
$$

where each A_k and B_j belong to A and $a_k, b_j \in [0, +\infty)$. Show that, for any measure μ ,

$$
\sum_{k=1}^{m} a_k \mu(A_k) = \sum_{j=1}^{n} b_j \mu(B_j).
$$

hint: for $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_m) \in \{0, 1\}^m$, define $A_{\varepsilon} = A_1^{\varepsilon_1} \cap \ldots \cap A_m^{\varepsilon_m}$ where $A_k^0 = A_k^c$ and $A_k^1 = A_k$. Define similarly B_{δ} for $\delta \in \{0,1\}^n$. Then set $f_{\varepsilon,\delta} = \sum_{k=1}^m \varepsilon_k a_k$ if $A_{\varepsilon} \cap B_{\delta} \neq \emptyset$ and $f_{\varepsilon,\delta} \neq 0$ otherwise. Show then that

$$
\sum_{k=1}^{m} a_k \mu(A_k) = \sum_{\varepsilon,\delta} f_{\varepsilon,\delta} \mu(A_\varepsilon \cap B_\delta)
$$

9. Recall that the outer measure $m^*(E)$ of a subset E of \mathbb{R}^d is defined as

$$
m^*(E) = \inf \sum_n m(B_n)
$$

where the infinimum is taken over all covers of E by countable unions $\bigcup_{n\in\mathbb{N}}B_n$ of boxes $B_n\subset\mathbb{R}^d$, and $m(B_n)$ is the product of the side lengths of the box B_n .

Let E be a subset of $X := [0, 1]^d$. In Lebesgue's 1901 original article, E is defined to be (Lebesgue) measurable if $m^*(E) + m^*(X \setminus E) = 1$. Show that this definition equivalent to the one(s) given in class.

10. Let (E, \mathcal{E}, μ) be a measure space. Call a subset $N \subseteq E$ null if $N \subseteq B$ for some $B \in \mathcal{E}$ with $\mu(B) = 0$. Write N for the set of null sets. Prove that the set of subsets $\mathcal{E}^{\mu} = \{A \cup N : A \in$ $\mathcal{E}, N \in \mathcal{N}$ is a σ -algebra and show that μ has a well-defined and countably additive extension to \mathcal{E}^{μ} given by $\mu(A \cup N) = \mu(A)$. We call \mathcal{E}^{μ} the *completion of* $\mathcal E$ with respect to μ . Suppose now that E is σ -finite and write μ^* for the outer measure associated to μ , as in the proof of Carathéodory's Extension Theorem. Show that \mathcal{E}^{μ} is exactly the set of μ^* -measurable sets.

11. Let $X = \mathbb{R}^d$ endowed with the σ -algebra $\mathcal B$ of Borel sets. A Dirac mass at $x \in X$ is the measure δ_x on B such that $\delta_x(A) = 1$ or 0 according as $x \in A$ or $x \notin A$. Let μ be a positive linear combination of a finite number of Dirac masses. What is the completion of β with respect to μ ?

12. Let C_n denote the *n*th approximation to the Cantor set C: thus $C_0 = [0, 1], C_1 = [0, \frac{1}{3}]$ $\frac{1}{3}$] \cup $\left[\frac{2}{3}\right]$ $\frac{2}{3}, 1],$ $C_2=[0,\frac{1}{9}]$ $\frac{1}{9}$] \cup $\left[\frac{2}{9}\right]$ $\frac{2}{9}, \frac{1}{3}$ $\frac{1}{3}$] \cup $\left[\frac{2}{3}\right]$ $\frac{2}{3}, \frac{7}{9}$ $\frac{7}{9}$] \cup $\left[\frac{8}{9}\right]$ $(\frac{8}{9}, 1]$, etc. and $C_n \downarrow C$ as $n \to \infty$. Show that C is Lebesgue measurable and has measure 0. Note that $[0,1] \setminus C_n$ is a union of 2^n open intervals I_1, \ldots, I_{2^n} read from left to right. Let $F_n : [0,1] \to [0,1]$ be the function equal to the constant $k/2^n$ on the k-th open interval, which is defined to be linear in between and continuous on [0,1]. Show that $F_n(x)$ converges uniformly on [0, 1] to a function $F(x)$, which is differentiable with derivative 0 at Lebesgue almost every point in $[0, 1]$.

Hint: express F_{n+1} recursively in terms of F_n and use this relation to obtain a uniform estimate on $F_{n+1} - F_n$.

13^{*}. A subset $E \subset \mathbb{R}$ is called Jordan measurable if for every $\epsilon > 0$ there are two finite unions of intervals $A = \bigcup_{1}^{n} I_i$ and $B = \bigcup_{1}^{m} J_j$ such that $A \subset E \subset B$ and $m(B \setminus A) < \varepsilon$, where m is defined on finite disjoint unions of intervals as the total length of the intervals.

Give an example of a compact subset of $[0, 1]$ that is not Jordan measurable.

14^{*}. Recall that a subset $E \subset \mathbb{R}^d$ is called Jordan measurable if for every $\epsilon > 0$ there are two elementary sets $A = \bigcup_{i=1}^{n} B_i$ and $B = \bigcup_{i=1}^{m} B'_j$, where the B_i, B'_j are bounded boxes in \mathbb{R}^d , such that $A \subset E \subset B$ and $m(B \setminus A) < \varepsilon$, where m is the elementary measure defined on elementary sets.

Show that a bounded subset of \mathbb{R}^d is Jordan measurable if and only if it is Lebesgue measurable and its boundary has Lebesgue measure zero.

15^{*}. Let $a < b$ be real numbers and $f : [a, b] \to \mathbb{R}$ a function. We denote by \mathcal{P} a (marked) subdivision $a = t_0 < t_1 < \ldots < t_n = b$ of the interval $[a, b]$ together with the choice of a point $x_i \in [t_{i-1}, t_i]$ for $i = 1, \ldots, n$. The quantity $\tau(\mathcal{P}) := \max_{1 \leq i \leq n} |t_i - t_{i-1}|$ is called the width of the subdivision. The Riemann sum $Sp(f)$ is defined by:

$$
S_{\mathcal{P}}(f) = \sum_{1 \leq i \leq n} f(x_i)(t_i - t_{i-1}).
$$

One says that f is Riemann integrable if all Riemann sums, for varying P , converge to the same limit as $\tau(\mathcal{P}) \to 0$. This limit is called the *Riemann integral* of f and is denoted by $\int_{[a,b]} f$.

Show that a subset $E \subset [a, b]$ is Jordan measurable if and only if the indicator function 1_E is Riemann integrable. Moreover in this case $m(E) = \int_{[a,b]} 1_E$.