E. Breuillard

Michaelmas 2017

Probability and Measure 4

You are not required to do the exercises marked with a star *

1. Let μ be a Borel probability measure on \mathbb{R}^d and let $(\mu_n : n \in \mathbb{N})$ be a sequence of such measures. Suppose that $\mu_n(f) \to \mu(f)$ for all C^{∞} functions on \mathbb{R}^d of compact support. Show that μ_n converges weakly to μ on \mathbb{R}^d .

2. Define a function ψ on \mathbb{R} by setting $\psi(x) = C \exp\{-(1-x^2)^{-1}\}$ for |x| < 1 and $\psi(x) = 0$ otherwise, where C is a constant chosen so that $\int_{\mathbb{R}} \psi(x) dx = 1$. For $f \in L^1(\mathbb{R})$ of compact support, show that $f * \psi$ is C^{∞} and of compact support.

3. Let (E, \mathcal{E}, μ) be a measure space and let $V_1 \leq V_2 \leq \ldots$ be an increasing sequence of closed subspaces of $L^2 = L^2(E, \mathcal{E}, \mu)$ for $f \in L^2$, denote by f_n the orthogonal projection of f on V_n . Show that f_n converges in L^2 .

4. Show that the Fourier transform of a finite Borel measure on \mathbb{R}^d is a bounded continuous function.

5*. Show that if f, g are two bounded integrable functions on \mathbb{R}^d then f * g is continuous. Deduce that if $A \subset \mathbb{R}^d$ has positive Lebesgue measure, then $A - A := \{a - b; a, b \in A\}$ has non empty interior.

6. For a finite Borel measure μ on the line show that, if $\int |x|^k d\mu(x) < \infty$, then the Fourier transform $\hat{\mu}$ of μ has a kth continuous derivative, which at 0 is given by

$$\hat{\mu}^{(k)}(0) = i^k \int x^k d\mu(x).$$

7. Let X, Y be two bounded random variables such that $\mathbb{E}(X^k) = \mathbb{E}(Y^k)$ for all integers $k \ge 0$. Show that X and Y have the same distribution. 8. (i) Show that for any real numbers a, b one has $\int_a^b e^{itx} dx \to 0$ as $|t| \to \infty$. (ii) Show that, for any $f \in L^1(\mathbb{R})$, the Fourier transform

$$\hat{f}(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$

tends to 0 as $|t| \to \infty$. This is the *Riemann–Lebesgue Lemma*.

9*. Say that $f \in L^2(\mathbb{R})$ is L^2 -differentiable if there is a function Df in $L^2(\mathbb{R})$ (called the L^2 -derivative of f) such that

$$\|\tau_h f - f - hDf\|_2/h \to 0 \quad \text{as} \quad h \to 0,$$

where $\tau_h f(x) = f(x+h)$. For example show that the function $f(x) = \max(1-|x|,0)$ is L^2 -differentiable and find its L^2 -derivative.

Suppose that $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ is L^2 -differentiable. Show that f has admits a continuous version (i.e. $\exists g$ continuous s.t. g(x) = f(x) a.e.).

Hint: show that $u\hat{f}(u) \in L^2$ and that $||f||_{\infty} \leq C||(1+|u|)\hat{f}(u)||_2$ for some finite absolute constant C, to be determined. This is the Sobolev embedding theorem and Sobolev inequality.

10*. The Schwartz space S of \mathbb{R} is the space of all C^{∞} complex valued functions f on \mathbb{R} such that for every $k, n \in \mathbb{Z}_{\geq 0}$ we have $f^{(k)}(x) = O(1/|x|^n)$ as $|x| \to +\infty$. Show that if f belongs to S so does \hat{f} .

11. Let $X = (X_1, \ldots, X_n)$ be a Gaussian random variable in \mathbb{R}^n with mean μ and covariance matrix V. Assume that V is invertible write $V^{-1/2}$ for the positive-definite square root of V^{-1} . Set $Y = (Y_1, \ldots, Y_n) = V^{-1/2}(X - \mu)$. Show that Y_1, \ldots, Y_n are independent N(0, 1) random variables. Show further that we can write X_2 in the form $X_2 = aX_1 + Z$ where Z is independent of X_1 and determine the distribution of Z.

12*. Let X_1, \ldots, X_n be independent N(0,1) random variables. Show that

$$\left(\overline{X}, \sum_{m=1}^{n} (X_m - \overline{X})^2\right)$$
 and $\left(\frac{X_n}{\sqrt{n}}, \sum_{m=1}^{n-1} X_m^2\right)$

have the same distribution, where $\overline{X} = (X_1 + \cdots + X_n)/n$.

13. The Cauchy distribution has density function $f(x) = \pi^{-1}(1+x^2)^{-1}$ for $x \in \mathbb{R}$. Show that one can simulate a random variable X whose law follows the Cauchy distribution by picking a random angle θ uniformly in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and setting $X = \tan \theta$. Show that the corresponding characteristic function is given by $\varphi(u) = e^{-|u|}$. Show also that, if X_1, \ldots, X_n are independent Cauchy random variables, then the random variable $(X_1 + \cdots + X_n)/n$ is also Cauchy.

14*. For each $n \in \mathbb{N}$, there is a unique probability measure μ_n on the unit sphere $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ such that $\mu_n(A) = \mu_n(UA)$ for all Borel sets A and all orthogonal $n \times n$ matrices U. Fix $k \in \mathbb{N}$ and, for $n \geq k$, let γ_n denote the probability measure on \mathbb{R}^k which is the law of $\sqrt{n}(x^1, \ldots, x^k)$ under μ_n . Show

(a) if $X \sim N(0, I_n)$ then $X/|X| \sim \mu_n$,

(b) if $(X_n : n \in \mathbb{N})$ is a sequence of independent N(0,1) random variables and if $R_n = \sqrt{X_1^2 + \cdots + X_n^2}$ then $R_n/\sqrt{n} \to 1$ a.s.,

(c) γ_n converges weakly to the standard Gaussian distribution on \mathbb{R}^k as $n \to \infty$.

15. Let (E, \mathcal{E}, μ) be a measure space and $\theta : E \to E$ a measure-preserving transformation. Show that $\mathcal{E}_{\theta} := \{A \in \mathcal{E} : \theta^{-1}(A) = A\}$ is a σ -algebra, and that a measurable function f is \mathcal{E}_{θ} -measurable if and only if it is *invariant*, that is $f \circ \theta = f$.

16. Show that, if θ is an ergodic measure-preserving transformation and f is a θ -invariant function, then there exists a constant $c \in \mathbb{R}$ such that f = c a.e..

17. For $x \in [0,1)$, set $\theta(x) = 2x \mod 1$. Show that θ is a measure-preserving transformation of $([0,1), \mathcal{B}([0,1)), dx)$, and that θ is ergodic. Identify the invariant function \overline{f} corresponding to each integrable function f.

18. Fix $a \in [0,1)$ and define, for $x \in [0,1)$, $\theta(x) = x + a \mod 1$. Show that θ is also a measurepreserving transformation of $([0,1), \mathcal{B}([0,1)), dx)$. Determine for which values of a the transformation θ is ergodic. *Hint: you may use the fact that any integrable function* f on [0,1) whose Fourier coefficients all vanish must itself vanish a.e.. Identify, for all values of a, the invariant function \overline{f} corresponding to an integrable function f.

19*. Call a sequence of random variables $(X_n : n \in \mathbb{N})$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ stationary if for each $n, k \in \mathbb{N}$ the random vectors (X_1, \ldots, X_n) and $(X_{k+1}, \ldots, X_{k+n})$ have the same distribution: for $A_1, \ldots, A_n \in \mathcal{B}$,

$$\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \mathbb{P}(X_{k+1} \in A_1, \dots, X_{k+n} \in A_n)$$

Show that, if $(X_n : n \in \mathbb{N})$ is a stationary sequence and $X_1 \in L^p$, for some $p \in [1, \infty)$, then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\to X \quad \text{a.s. and in } L^{p},$$

for some random variable $X \in L^p$ and find $\mathbb{E}(X)$.