Probability and Measure 2

3.1. Let (X, \mathcal{A}) be a measurable space. Suppose that a simple function f has two representations

$$
f=\sum_{k=1}^{m} a_{k} 1_{A_{k}}=\sum_{j=1}^{n} b_{j} 1_{B_{j}} .
$$

Show that, for any measure μ,

$$
\sum_{k=1}^{m} a_{k} \mu\left(A_{k}\right)=\sum_{j=1}^{n} b_{j} \mu\left(B_{j}\right) .
$$

hint: for $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in\{0,1\}^{m}$, define $A_{\varepsilon}=A_{1}^{\varepsilon_{1}} \cap \ldots \cap A_{m}^{\varepsilon_{m}}$ where $A_{k}^{0}=A_{k}^{c}$ and $A_{k}^{1}=A_{k}$. Define similarly B_{δ} for $\delta \in\{0,1\}^{n}$. Then set $f_{\varepsilon, \delta}=\sum_{k=1}^{m} \varepsilon_{k} a_{k}$ if $A_{\varepsilon} \cap B_{\delta} \neq \emptyset$ and $f_{\varepsilon, \delta}=0$ otherwise. Show then that

$$
\sum_{k=1}^{m} a_{k} \mu\left(A_{k}\right)=\sum_{\varepsilon, \delta} f_{\varepsilon, \delta} \mu\left(A_{\varepsilon} \cap B_{\delta}\right)
$$

3.2. Let μ and ν be finite Borel measures on \mathbb{R}. Let f be a continuous bounded function on \mathbb{R}. Show that f is integrable with respect to μ and ν. Show further that, if $\mu(f)=\nu(f)$ for all such f, then $\mu=\nu$.
3.3. Let f be a real-valued integrable function on a measure space (X, \mathcal{A}, μ). Let \mathcal{F} be a family of subsets from \mathcal{A}, which is stable under intersection, contains X and generates the σ-algebra \mathcal{A}. Suppose that $\mu\left(f 1_{F}\right)=0$ for all subsets $F \in \mathcal{F}$. Show that $f=0 \mu$-a.e.
3.4. Let X be a non-negative integer-valued random variable. Show that

$$
\mathbb{E}(X)=\sum_{n=1}^{\infty} \mathbb{P}(X \geq n)
$$

Deduce that, if $\mathbb{E}(X)=\infty$ and X_{1}, X_{2}, \ldots is a sequence of independent random variables with the same distribution as X, then, almost surely, $\lim \sup _{n}\left(X_{n} / n\right)=\infty$. (hint: use the second Borel-Cantelli lemma)

Now suppose that Y_{1}, Y_{2}, \ldots is any sequence of independent identically distributed real-valued random variables with $\mathbb{E}\left|Y_{1}\right|=\infty$. Show that, almost surely, $\lim \sup _{n}\left(\left|Y_{n}\right| / n\right)=\infty$, and moreover $\lim \sup _{n}\left(\left|Y_{1}+\cdots+Y_{n}\right| / n\right)=\infty$.
3.5. Show that the product of the Borel σ-algebras of $\mathbb{R}^{d_{1}}$ and $\mathbb{R}^{d_{2}}$ is the Borel σ-algebra of $\mathbb{R}^{d_{1}+d_{2}}$. Give an example to show that this is no longer the case if the word Borel is replaced by Lebesgue.
3.6. Show that the function $\sin x / x$ is not Lebesgue integrable over $[1, \infty)$ but that integral $\int_{1}^{N}(\sin x / x) d x$ converges as $N \rightarrow \infty$.

Show that the function $f(x):=x^{2} \sin \left(\frac{1}{x^{2}}\right)$ is continuous and differentiable at every point of $[0,1]$ but its derivative is not Lebesgue integrable on this interval.
3.7. Show that, as $n \rightarrow \infty$,

$$
\int_{0}^{\infty} \sin \left(e^{x}\right) /\left(1+n x^{2}\right) d x \rightarrow 0 \quad \text { and } \quad \int_{0}^{1}(n \cos x) /\left(1+n^{2} x^{\frac{3}{2}}\right) d x \rightarrow 0
$$

3.8. Let u and v be differentiable functions on \mathbb{R} with continuous derivatives u^{\prime} and v^{\prime}. Suppose that $u v^{\prime}$ and $u^{\prime} v$ are integrable on \mathbb{R} and $u(x) v(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Show that

$$
\int_{\mathbb{R}} u(x) v^{\prime}(x) d x=-\int_{\mathbb{R}} u^{\prime}(x) v(x) d x .
$$

3.9. Let (E, \mathcal{E}) and (G, \mathcal{G}) be measurable spaces and let $f: E \rightarrow G$ be a measurable function. Given a measure μ on (E, \mathcal{E}), the image measure $\nu:=f_{*} \mu$ on (G, \mathcal{G}) is defined by

$$
\nu(A)=\mu\left(f^{-1}(A)\right)
$$

for all $A \in \mathcal{G}$. Show that $\nu(g)=\mu(g \circ f)$ for all non-negative measurable functions g on G.
3.10. The moment generating function ϕ of a real-valued random variable X is defined by $\phi(\theta)=$ $\mathbb{E}\left(e^{\theta X}\right), \forall \theta \in \mathbb{R}$.

Suppose that ϕ is finite on an open interval containing 0 . Show that ϕ has derivatives of all orders at 0 and that X has finite moments of all orders given by

$$
\mathbb{E}\left(X^{n}\right)=\left.\left(\frac{d}{d \theta}\right)^{n}\right|_{\theta=0} \phi(\theta) .
$$

3.11. Let X_{1}, \ldots, X_{n} be random variables with density functions f_{1}, \ldots, f_{n} respectively. Suppose that the \mathbb{R}^{n}-valued random variable $X=\left(X_{1}, \ldots, X_{n}\right)$ also has a density function f. Show that X_{1}, \ldots, X_{n} are independent if and only if

$$
f\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right) \quad \text { a.e. }
$$

3.12. Recall that a bounded function $f:[0,1] \rightarrow \mathbb{R}$ is called Riemann integrable if all its Riemann sums converge. Let \mathcal{P}_{n} be the level- n dyadic partition of $[0,1)$ given by all intervals of the form $I_{k, n}=\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$ for $k=0, \ldots, 2^{n}-1$, and let g_{n} be the step function equal to $\inf _{I_{k, n}} f$ on $I_{k, n}$ and f_{n} the step function equal to $\sup _{I_{k, n}} f$ on $I_{k, n}$.

Show that f is Riemann integrable if and only if $\int_{[0,1]} f_{n}-\int_{[0,1]} g_{n}$ tends to 0 as n tends to infinity (where the measure on $[0,1]$ is Lebesgue measure).

Let \mathcal{D} be the set of all dyadic numbers (i.e. numbers of the form $\frac{k}{2^{n}}$ for some k, n). Show that if $x \in[0,1] \backslash \mathcal{D}$, then f is continuous at x if and only if $\lim _{n \rightarrow+\infty} f_{n}(x)-g_{n}(x)=0$.

Deduce that f is Riemann integrable if and only if the set of discontinuity of f is of Lebesgue measure zero.
3.13. Let μ and ν be probability measures on (E, \mathcal{E}) and let $f: E \rightarrow[0, R]$ be a measurable function. Suppose that $\nu(A)=\mu\left(f 1_{A}\right)$ for all $A \in \mathcal{E}$. Let $\left(X_{n}: n \in \mathbb{N}\right)$ be a sequence of independent random variables in E with law μ and let $\left(U_{n}: n \in \mathbb{N}\right)$ be a sequence of independent uniformly distributed on $[0, R]$ random variables. Set

$$
T=\min \left\{n \in \mathbb{N}: U_{n} \leq f\left(X_{n}\right)\right\}, Y=X_{T} .
$$

Show that Y has law ν. (This justifies simulation by rejection sampling.)

