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Probability and Measure 1

1.1. Let E be a set and let S be a set of σ-algebras on E. Define

E∗ = {A ⊆ E : A ∈ E for all E ∈ S}.

Show that E∗ is a σ-algebra on E. Show, on the other hand, by example, that the union of two
σ-algebras on the same set need not be a σ-algebra.

1.2. Show that the following sets of subsets of R all generate the same σ-algebra:
(a) {(a, b) : a < b}, (b) {(a, b] : a < b}, (c) {(−∞, b] : b ∈ R}.

1.3. Let E be a set. Show that a countably additive set function on a Boolean algebra of subsets
of E is additive, increasing and countably subadditive.

1.4. Let E be a set and E a family of subsets of E, which contains E and ∅, and is stable under
complementation, under countable disjoint unions and under finite intersections. Show that E is a
σ-algebra.

1.5. Let µ be a finite-valued additive set function on a Boolean algebra A of subsets of a set X.
Show that µ is countably additive if and only if the following condition holds: for any decreasing
sequence (An : n ∈ N) of sets in A, with ∩nAn = ∅, we have µ(An)→ 0.

1.6. Let (E, E , µ) be a finite measure space. Recall that for any sequence of sets (An : n ∈ N) in E ,
lim inf An is the subset of those x ∈ E such that x ∈ Am for all large enough m ∈ N, and lim supAn
is the subset of those x ∈ E such that x belongs to Am for infinitely many m ∈ N. Show that

µ(lim inf An) ≤ lim inf µ(An) ≤ lim supµ(An) ≤ µ(lim supAn).

Show that the first inequality remains true without the assumption that µ(E) < ∞, but that the
last inequality may then be false.
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1.7. A subset E ⊂ R is called Jordan measurable if for every ε > 0 there are two finite unions of
intervals A =

⋃n
1 Ii and B =

⋃m
1 Jj such that A ⊂ E ⊂ B and m(B \ A) < ε, where m is defined

on finite disjoint unions of intervals as the total length of the intervals.
Give an example of a compact subset of [0, 1] that is not Jordan measurable.

1.8. Let (E, E , µ) be a measure space. Call a subset N ⊆ E null if N ⊆ B for some B ∈ E with
µ(B) = 0. Write N for the set of null sets. Prove that the set of subsets Eµ = {A ∪ N : A ∈
E , N ∈ N} is a σ-algebra and show that µ has a well-defined and countably additive extension to
Eµ given by µ(A∪N) = µ(A). We call Eµ the completion of E with respect to µ. Suppose now that
E is σ-finite and write µ∗ for the outer measure associated to µ, as in the proof of Carathéodory’s
Extension Theorem. Show that Eµ is exactly the set of µ∗-measurable sets.

1.9. Recall that the outer measure m∗(E) of a subset E of Rd is defined as

m∗(E) = inf
∑
n

m(Bn)

where the infinimum is taken over all covers of E by countable unions
⋃
n∈NBn of boxes Bn ⊂ Rd,

and m(Bn) is the product of the side lengths of the box Bn.
Let E be a subset ofX := [0, 1]d. In Lebesgue’s 1901 original article, E is defined to be (Lebesgue)

measurable if m∗(E) +m∗(X \ E) = 1. Show that this definition equivalent to the one(s) given in
class.

2.1. Let (fn : n ∈ N) be a sequence of measurable functions on a measurable space (E, E).
Show that the following functions are also measurable: f1 + f2, f1f2, infn fn, supn fn, lim infn fn,
lim supn fn. Show also that {x ∈ E : fn(x) converges as n→∞} ∈ E .

2.2. Let (E, E) and (G,G) be measurable spaces, let µ be a measure on E , and let f : E → G be a
measurable function. Show that we can define a measure ν on G by setting ν(A) = µ(f−1(A)) for
each A ∈ G.

2.3. Show that the following condition implies that random variables X and Y are independent:
P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) for all x, y ∈ R.
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2.4. Let (An : n ∈ N) be a sequence of events in a probability space. Show that the events An are
independent if and only if the σ-algebras σ(An) = {∅, An, Acn,Ω} are independent.

2.5. Let (An : n ∈ N) be a sequence of events, with P(An) = 1/n2 for all n. Set Xn = n21An − 1
and set X̄n = (X1 + · · ·+Xn)/n. Show that E(X̄n) = 0 for all n, but that X̄n → −1 almost surely
as n→∞.

2.6. The zeta function is defined for s > 1 by ζ(s) =
∑∞

n=1 n
−s. Let X and Y be independent

integer valued random variables with

P(X = n) = P(Y = n) = n−s/ζ(s).

Write An for the event that n divides X. Show that the events (Ap : p prime) are independent and
deduce Euler’s formula

1

ζ(s)
=
∏
p

(
1− 1

ps

)
.

Show also that P(X is square-free) = 1/ζ(2s). Write H for the highest common factor of X and
Y . Show finally that P(H = n) = n−2s/ζ(2s).

2.7. Let (Xn : n ∈ N) be independent N(0, 1) random variables. Prove that

lim sup
n

(
Xn/

√
2 log n

)
= 1 a.s.

2.8. Let Cn denote the nth approximation to the Cantor set C: thus C0 = [0, 1], C1 = [0, 13 ]∪ [23 , 1],

C2 = [0, 19 ] ∪ [29 ,
1
3 ] ∪ [23 ,

7
9 ] ∪ [89 , 1], etc. and Cn ↓ C as n → ∞. Denote by Fn the distribution

function of a random variable uniformly distributed on Cn. Show that

(a) C is uncountable and has Lebesgue measure 0,
(b) for all x ∈ [0, 1], the limit F (x) = limn→∞ Fn(x) exists,
(c) the function F is continuous on [0, 1], with F (0) = 0 and F (1) = 1,
(d) for almost all x ∈ [0, 1], F is differentiable at x with F ′(x) = 0.

Hint: express Fn+1 recursively in terms of Fn and use this relation to obtain a uniform estimate
on Fn+1 − Fn.


