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Probability and Measure 2

3.1. Suppose that a simple function f has two representations

f =
m∑
k=1

ak1Ak
=

n∑
j=1

bk1Bk
.

For ε = (ε1, . . . , εm) ∈ {0, 1}m, define Aε = Aε11 ∩ . . . ∩ Aεmm where A0
k = Ack and A1

k = Ak. Define
similarly Bδ for δ ∈ {0, 1}n. Then set fε,δ =

∑m
k=1 εkak if Aε ∩ Bδ 6= ∅ and fε,δ = 0 otherwise.

Show that, for any measure µ,
m∑
k=1

akµ(Ak) =
∑
ε,δ

fε,δµ(Aε ∩Bδ)

and deduce that
m∑
k=1

akµ(Ak) =
n∑
j=1

bjµ(Bj).

3.2. Let µ and ν be finite Borel measures on R. Let f be a continuous bounded function on R.
Show that f is integrable with respect to µ and ν. Show further that, if µ(f) = ν(f) for all such
f , then µ = ν.

3.3. Let f be an integrable function on a measure space (E, E , µ). Suppose that, for some π-system
A containing E and generating E , we have µ(f1A) = 0 for all A ∈ A. Show that f = 0 a.e.

3.4. Let X be a non-negative integer-valued random variable. Show that

E(X) =

∞∑
n=1

P(X ≥ n).

Deduce that, if E(X) =∞ and X1, X2, . . . is a sequence of independent random variables with the
same distribution as X, then, almost surely, lim supn(Xn/n) ≥ 1, and moreover lim supn(Xn/n) =
∞.

Now suppose that Y1, Y2, . . . is any sequence of independent identically distributed random
variables with E|Y1| = ∞. Show that, almost surely, lim supn(|Yn|/n) = ∞, and moreover
lim supn(|Y1 + · · ·+ Yn|/n) =∞.

3.5. For α ∈ (0,∞) and x ∈ (0,∞), define fα(x) = x−α. Show that fα is integrable with respect
to Lebesgue measure on (0, 1] if and only if α < 1. Show also that fα is integrable with respect to
Lebesgue measure on [1,∞) if and only if α > 1.
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3.6. Show that the function sinx/x is not Lebesgue integrable over [1,∞) but that integral
∫ N
1 (sinx/x)dx

converges as N →∞.

3.7. Show that, as n→∞,∫ ∞
0

sin(ex)/(1 + nx2)dx→ 0 and

∫ 1

0
(n cosx)/(1 + n2x

3
2 )dx→ 0.

3.8. Let u and v be differentiable functions on R with continuous derivatives u′ and v′. Suppose
that uv′ and u′v are integrable on R and u(x)v(x)→ 0 as |x| → ∞. Show that∫

R
u(x)v′(x)dx = −

∫
R
u′(x)v(x)dx.

3.9. Let (E, E) and (G,G) be measurable spaces and let f : E → G be a measurable function.
Given a measure µ on (E, E), consider the image measure ν = µ ◦ f−1 on (G,G). Show that
ν(g) = µ(g ◦ f) for all non-negative measurable functions g on G.

3.10. The moment generating function φ of a real-valued random variable X is defined by φ(θ) =
E(eθX), θ ∈ R.

Suppose that φ is finite on an open interval containing 0. Show that φ has derivatives of all
orders at 0 and that X has finite moments of all orders given by

E(Xn) =

(
d

dθ

)n ∣∣∣∣
θ=0

φ(θ).

3.11. Let X1, . . . , Xn be random variables with density functions f1, . . . , fn respectively. Suppose
that the Rn-valued random variable X = (X1, . . . , Xn) also has a density function f . Show that
X1, . . . , Xn are independent if and only if

f(x1, . . . , xn) = f1(x1) . . . fn(xn) a.e.

3.12. Show that, for all non-negative measurable functions f on [0,∞), the function (x, y) 7→
f(|(x, y)|) is measurable on R2 and (without using the Jacobian formula)∫

R2

f(|(x, y)|)dxdy = 2π

∫ ∞
0

rf(r)dr.

Hence show that (2π)−1/2e−x
2/2 is a probability density function.

3.13. Let µ and ν be probability measures on (E, E) and let f : E → [0, R] be a measurable function.
Suppose that ν(A) = µ(f1A) for all A ∈ E . Let (Xn : n ∈ N) be a sequence of independent random
variables in E with law µ and let (Un : n ∈ N) be a sequence of independent U [0, 1] random
variables. Set

T = min{n ∈ N : RUn ≤ f(Xn)}, Y = XT .

Show that Y has law ν. (This justifies simulation by rejection sampling.)


