1.1. Let E be a set and let \mathcal{S} be a set of σ-algebras on E. Define

$$
\mathcal{E}^{*}=\{A \subseteq E: A \in \mathcal{E} \quad \text { for all } \quad \mathcal{E} \in \mathcal{S}\} .
$$

Show that \mathcal{E}^{*} is a σ-algebra on E. Show, on the other hand, by example, that the union of two σ-algebras on the same set need not be a σ-algebra.
1.2. Show that the following sets of subsets of \mathbb{R} all generate the same σ-algebra:
(a) $\{(a, b): a<b\}$,
(b) $\{(a, b]: a<b\}$,
(c) $\{(-\infty, b]: b \in \mathbb{R}\}$.
1.3. Show that a countably additive set function on a ring is additive, increasing and countably subadditive.
1.4. Show that a π-system which is also a d-system is a σ-algebra.
1.5. Let μ be a finite-valued additive set function on a $\operatorname{ring} \mathcal{A}$. Show that μ is countably additive if and only if the following condition holds: for any decreasing sequence ($A_{n}: n \in \mathbb{N}$) of sets in \mathcal{A}, with $\cap_{n} A_{n}=\emptyset$, we have $\mu\left(A_{n}\right) \rightarrow 0$.
1.6. Let (E, \mathcal{E}, μ) be a finite measure space. Show that, for any sequence of sets $\left(A_{n}: n \in \mathbb{N}\right)$ in \mathcal{E},

$$
\mu\left(\liminf A_{n}\right) \leq \liminf \mu\left(A_{n}\right) \leq \lim \sup \mu\left(A_{n}\right) \leq \mu\left(\lim \sup A_{n}\right) .
$$

Show that the first inequality remains true without the assumption that $\mu(E)<\infty$, but that the last inequality may then be false.
1.7. Let $\left(A_{n}: n \in \mathbb{N}\right)$ be a sequence of events in a probability space. Show that the events A_{n} are independent if and only if the σ-algebras $\sigma\left(A_{n}\right)=\left\{\emptyset, A_{n}, A_{n}^{c}, \Omega\right\}$ are independent.
1.8. Let B be a Borel subset of the interval $[0,1]$. Show that for every $\varepsilon>0$, there exists a finite union of disjoint intervals $A=\left(a_{1}, b_{1}\right] \cup \ldots \cup\left(a_{n}, b_{n}\right]$ such that the Lebesgue measure of $A \triangle B$ $\left(=\left(A^{c} \cap B\right) \cup\left(A \cap B^{c}\right)\right)$ is less than ε. Show further that this remains true for every Borel set in \mathbb{R} of finite Lebesgue measure.
1.9. Let (E, \mathcal{E}, μ) be a measure space. Call a subset $N \subseteq E$ null if $N \subseteq B$ for some $B \in \mathcal{E}$ with $\mu(B)=0$. Write \mathcal{N} for the set of null sets. Prove that the set of subsets $\mathcal{E}^{\mu}=\{A \cup N: A \in$ $\mathcal{E}, N \in \mathcal{N}\}$ is a σ-algebra and show that μ has a well-defined and countably additive extension to \mathcal{E}^{μ} given by $\mu(A \cup N)=\mu(A)$. We call \mathcal{E}^{μ} the completion of \mathcal{E} with respect to μ. Suppose now that E is σ-finite and write μ^{*} for the outer measure associated to μ, as in the proof of Carathéodory's Extension Theorem. Show that \mathcal{E}^{μ} is exactly the set of μ^{*}-measurable sets.
2.1. Let $\left(f_{n}: n \in \mathbb{N}\right)$ be a sequence of measurable functions on a measurable space (E, \mathcal{E}). Show that the following functions are also measurable: $f_{1}+f_{2}, f_{1} f_{2}, \inf _{n} f_{n}, \sup _{n} f_{n}, \liminf f_{n} f_{n}$, $\limsup _{n} f_{n}$. Show also that $\left\{x \in E: f_{n}(x)\right.$ converges as $\left.n \rightarrow \infty\right\} \in \mathcal{E}$.
2.2. Let (E, \mathcal{E}) and (G, \mathcal{G}) be measurable spaces, let μ be a measure on \mathcal{E}, and let $f: E \rightarrow G$ be a measurable function. Show that we can define a measure ν on \mathcal{G} by setting $\nu(A)=\mu\left(f^{-1}(A)\right)$ for each $A \in \mathcal{G}$.
2.3. Show that the following condition implies that random variables X and Y are independent: $\mathbb{P}(X \leq x, Y \leq y)=\mathbb{P}(X \leq x) \mathbb{P}(Y \leq y)$ for all $x, y \in \mathbb{R}$.
2.4. Let $\left(A_{n}: n \in \mathbb{N}\right)$ be a sequence of events, with $\mathbb{P}\left(A_{n}\right)=1 / n^{2}$ for all n. Set $X_{n}=n^{2} 1_{A_{n}}-1$ and set $\bar{X}_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$. Show that $\mathbb{E}\left(\bar{X}_{n}\right)=0$ for all n, but that $\bar{X}_{n} \rightarrow-1$ almost surely as $n \rightarrow \infty$.
2.5. The zeta function is defined for $s>1$ by $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$. Let X and Y be independent random variables with

$$
\mathbb{P}(X=n)=\mathbb{P}(Y=n)=n^{-s} / \zeta(s)
$$

Write A_{n} for the event that n divides X. Show that the events ($A_{p}: p$ prime) are independent and deduce Euler's formula

$$
\frac{1}{\zeta(s)}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)
$$

Show also that $\mathbb{P}(X$ is square-free $)=1 / \zeta(2 s)$. Write H for the highest common factor of X and Y. Show finally that $\mathbb{P}(H=n)=n^{-2 s} / \zeta(2 s)$.
2.6. Let $\left(X_{n}: n \in \mathbb{N}\right)$ be independent $N(0,1)$ random variables. Prove that

$$
\limsup _{n}\left(X_{n} / \sqrt{2 \log n}\right)=1 \quad \text { a.s. }
$$

2.7. Let C_{n} denote the nth approximation to the Cantor set C : thus $C_{0}=[0,1], C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$, $C_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right]$, etc. and $C_{n} \downarrow C$ as $n \rightarrow \infty$. Denote by F_{n} the distribution function of a random variable uniformly distributed on C_{n}. Show that
(a) C is uncountable and has Lebesgue measure 0 ,
(b) for all $x \in[0,1]$, the limit $F(x)=\lim _{n \rightarrow \infty} F_{n}(x)$ exists,
(c) the function F is continuous on $[0,1]$, with $F(0)=0$ and $F(1)=1$,
(d) for almost all $x \in[0,1], F$ is differentiable at x with $F^{\prime}(x)=0$.

Hint: express F_{n+1} recursively in terms of F_{n} and use this relation to obtain a uniform estimate on $F_{n+1}-F_{n}$.

