PRINCIPLES OF STATISTICS Part 11
Example Sheet 4 (of 4) Michaelmas 2025
By courtesy of Prof Rajen Shah

1. Consider a classification setting where (X,Y) € RP x {0,1} is a random input—output
pair. Let f; be the conditional density of X given Y = j and let 7; = P(Y = j) for
j € {0,1}. Show that §, given by

e fi(z)m
5(x) = 1 if O > 1
0 otherwise

is a Bayes classifier. Show moreover that if

then any Bayes classifier § satisfies P(0(X) = 6,(X)) = 1.

2. In each of the parts below, we consider the classification setting in Question

(a)

Consider first the special case in which X |Y = j ~ Np,(uj,X) where ¥ is a known
positive definite matrix and the means g, 11 are known with pg # pi. Show that a
minimax classifier d, that is one where

P(6(X Y =y)=inf P(0'(X Y =
G PR A VY =0 =il gy PO 2V =)

is obtained by selecting §(X) = 1 whenever

1 _ _
D= S (ko + 1) S (o — pa) + X TS (g — po) > 0,
and 0 otherwise. [Hint: First argue that D ~ N(A?/2, A?) when X ~ Np(u1,%) and
D ~ N(—=A2?/2,A?%) when X ~ Ny(po,X), where A? := (g — po) " 7 (w1 — o)
We now return to a more general setting where the conditional distributions of X | Y =
J are not necessarily Gaussian. Suppose we have i.i.d. copies (X;,Y;)! ; of (X,Y).
Consider a sample version of linear discriminant analysis involving estimates

. 1 = 1 - ~
= Y Xi and  E:= p— o> (Xi—m)(Xi— )"
T iYi=j j=0,14:Y;=j

where n; 1= > 1 Lyy,—jy, for j € {0,1}.
(i) Writing ¥; := Var(X |Y = j) for j € {0,1} and 7 := P(Y = 1), show that as
n — 00, R
SAE S =a8 4+ (1 —7m)%0.
(ii) Suppose that ¥ is positive definite and 7 € (0,1). Show that the vector B =
S (i — flg) satisfies 5 5 5* as n — 0o, where #* maximises
Var(E(8' X |Y))
E(Var(TX [Y))

over f € RP, B # 0. (Thus 5* has the interpretation of being a direction upon
which the projection of X has the maximal ratio of the “between class variance”
to the “within class variance”.)



3. Let (X;,Y5) be ii.d. copies of a random pair (X,Y) € R x R. Let v := Cov(X,Y),
= /Var(X), o2 := \/Var(Y) and let v := Var((X — E(X))(Y — E(Y))), with all of

these quantltles assumed to be ﬁmte and non-zero.

(i) Show that the sample covariance

-3 L= 00D

3\'—‘

satisfies v/n(y — ) LN N(0,v).
(ii) Now let p be the correlation af X and Y. Find the distributional limit of \/n(p — p)
where p is the sample correlation, in the case where X and Y are independent.

4. Let F : R — [0,1] be a probability distribution function and let F~!: (0,1) — R be the
quantile function F~1(p) := inf{t : F(t) > p}.

(a) Show that for p € (0,1) and ¢t € R,
F~'(p) <t <= p < F(t).

Conclude that if U ~ U[0, 1], then F~1(U) ~ F.
[Hint: F is always right continuous, that is F(t + ay) | F(t) for all a, | 0.]

(b) Now suppose F' is continuous and strictly increasing, and F), for n € N are probability
distribution functions such that F,,(t) — F(t) for all t € R. Show that then F;!(p) —
F~Y(p) for all p € (0,1). [Hint: Consider (for example) F(F,(p)).]

5. Suppose X1, Xo,... are i.i.d. and @L = Th(Xq,...,X,) is an estimate of a parameter

6 € R. Denoting the true parameter by 6y, suppose /n (5 — 6o) % F where F is some
continuous and strictly increasing distribution function. Suppose we have an estimate
F, of F, e.g. coming from the bootstrap, satlsfylng SUD;cr |Fo(t) — F(t)] “¥ 0. Given

€ (0,1), let Iy = Fn Y(a/2) and y, := Fn 1(1 - a/2). Show that the confidence interval

Cpi={0:1, < v/n(6n — 0) <}
satisfies R
P(@o S Cn) —1—a.
[Hint: Recall that P(AN B) =P(A) +P(B) —P(AU B).]
6. Let f,g : R — [0,00) be bounded probability density functions such that f(x) < Mg(x)
for all z € R and some constant M > 0. Suppose you can simulate a random variable

X of density g and a random variable U ~ U]0, 1]. Consider the following ‘accept-reject’
algorithm:

Step 1. Draw X ~ g, U ~ UJ0,1] independently.
Step 2. Accept Y =X if U< f(X)/(Mg(X)), and return to Step 1 otherwise.
Show that Y has density f.

7. Let U, Uy Lig UJ0,1] and define

X1 = v/ —2log(Uy) cos(2mUs), Xo = +/—2log(Uy)sin(2nUs).

Show that X7, Xo "= N(0, 1).



8.

10.

11.

Consider observations X7, ..., X, from a statistical model {f(-,0) : 0 € ©},0 =RP p € N,
and denote by II(:| X1, ..., X)) the posterior distribution arising from a N, (0,I) prior
on ©. The Markov chain (¢, : m € N) is started at arbitrary ¥o € RP and generated as
follows:

Step 1. For m € NU{0},0 € (0,1/2) and given ¥,,, generate £ ~ m = Np(0,1)

and set
Sm = V1 — 260, + V/26¢.

Step 2. Define
Sms with probability p(Up,, sm)
U1 = . o
s with probability 1 — p(¥m,Sm),

where the acceptance probabilities are given by
n
p(Imy $m) = min { )= 1} p(0) = "log £(X;,0).
i=1

Step 3. Repeat the above with m~— m +1.

Show that the posterior distribution II(:| X7, ..., X},) is an invariant distribution for (¢, :
m € N).

[Hint: Show that the algorithm given is a special case of the Metropolis—Hastings algo-
rithm.]

. Let X1,..., X, be drawn ii.d. from a continuous distribution function F' : R — [0, 1],

and let F,(t) := (1/n) > im1 1—o0,q(X;) be the empirical distribution function. Use the
Kolmogorov—Smirnov theorem to construct a confidence band for the unknown function
F of the form R R

{Cn(z) = [Fp(z) — Rn, Fp(z) + Ry : x € R}

that satisfies P(F(z) € Cy(z) Vo € R) — 1 — a as n — oo, and where R,, = R/\/n for
some fixed R > 0.

Suppose for real-valued random variables X, X1, Xo,... we have X, % X and the dis-
tribution function F of X is continuous. Show that the distribution function F;, of X,
satisfies
sup |F,,(t) — F(t)| — 0.
t

[Hint: Argue similarly to the proof of the Glivenko—Cantelli theorem.]

~

Let X1, X5,... be ii.d. and consider estimating some parameter § € R using 6, :=
To(X1,...,X,). We wish to use this to test the null hypothesis § = 6. We assume
that R

Ry, = /n(0, — 0) > G

for some unknown continuous distribution GG. Now let m,, € N be such that m,, — oo but
my/n — 0. Let By, :== |n/m,| and for b =1, ..., B,, define

R7('Lb) =V mn{Tmn (X(b—l)mn—i—la s aXbmn) - 90}

Finally, write G, for the empirical distribution function of {RS), . ,R%B")}.



(a)

Using the fact that for any Z1,..., Zg L F', their empirical distribution ﬁk satisfies

2

P <sup |F(t) — F(t)] > e) < 2¢7 2k
t

show that sup, |G (t) — G(t)] 5 0.
[Hint: Note that sup, |Gy (t) — G(t)| < sup; |Gn(t) — Gp(t)| + sup; |Gn(t) — G(t)| where
Gy, is the distribution of R,(Il).]

Argue that the test ¢, that rejects (i.e. ¢, = 1) when
VB, —60) > G, 11— a)

has P(¢, = 1) — « under the null.

[Hint: Use the fact that for any sequence Zi,Zs, ... of random wvariables, Zy 5z
if and only if every subsequence of the Z, contains a further subsequence ny where
Zn, 3 7 as k — 0]



