

1. Consider the Bayesian model $X | \theta \sim \text{Pois}(\theta)$, $\theta \in \Theta = [0, \infty)$, and suppose the prior for θ is a Gamma distribution with parameters α, λ . Show that the posterior distribution $\theta | X$ is also a Gamma distribution and find its parameters.
2. Suppose $X | \theta \sim \text{Bin}(n, \theta)$ (where n is known) with $\theta \in \Theta = [0, 1]$.
 - (a) Consider a Beta(a, b) prior for θ . Show that the posterior distribution is Beta($a + X, b + n - X$) and compute the posterior mean $\bar{\theta}_n = \bar{\theta}_n(X)$.
 - (b) Show that the maximum likelihood estimator for θ is *not* identical to the posterior mean with ‘ignorant’ uniform prior $\theta \sim U[0, 1]$.
 - (c) Now suppose $X \sim \text{Bin}(n, \theta_0)$ where $\theta_0 \in (0, 1)$ is deterministic. Derive the asymptotic distribution of $\sqrt{n}(\bar{\theta}_n - \theta_0)$.
3. Consider the Bayesian model $X_1, \dots, X_n | \theta \sim N(\theta, 1)$ with prior π such that $\theta \sim N(\mu, v^2)$. Writing $\bar{\theta}_n$ for the posterior mean, for $0 < \alpha < 1$, consider the $(1-\alpha)$ -level credible interval

$$\hat{C}_n = \{\theta \in \mathbb{R} : |\theta - \bar{\theta}_n| \leq R_n\}.$$

Now suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} N(\theta_0, 1)$ for a deterministic $\theta_0 \in \mathbb{R}$. Show that, as $n \rightarrow \infty$, $\mathbb{P}_{\theta_0}(\theta_0 \in \hat{C}_n) \rightarrow 1 - \alpha$.

4. Consider estimation of $\theta \in \Theta = [0, 1]$ with data $X \sim \text{Bin}(n, \theta)$ under quadratic risk.
 - (a) Find the unique minimax estimator $\tilde{\theta}_n$ of θ and deduce that the maximum likelihood estimator $\hat{\theta}_n$ of θ is *not* minimax for any fixed sample size $n \in \mathbb{N}$.
 - (b) Show, however, that
$$\lim_{n \rightarrow \infty} \frac{\sup_{\theta} R(\hat{\theta}_n, \theta)}{\sup_{\theta} R(\tilde{\theta}_n, \theta)} = 1$$

and moreover that the maximum likelihood estimator dominates $\tilde{\theta}_n$ in the large sample limit in the sense that

$$\lim_{n \rightarrow \infty} \frac{R(\hat{\theta}_n, \theta)}{R(\tilde{\theta}_n, \theta)} < 1 \text{ for all } \theta \in [0, 1], \theta \neq \frac{1}{2}.$$
5. Suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$.
 - (a) Suppose $(\mu, \sigma^2) \in \Theta = \mathbb{R} \times [0, v]$ for some $v > 0$. Show that the sample mean \bar{X}_n is minimax for the risk $R(\bar{X}_n, (\mu, \sigma^2)) = \mathbb{E}[(\bar{X}_n - \mu)^2]$.
 - (b) Now suppose it is known that $\sigma^2 = 1$ but $\mu \in \Theta = [0, \infty)$ is unknown. Show that the sample mean \bar{X}_n is inadmissible for quadratic risk, but that it is still minimax. What happens if $\Theta = [a, b]$ for some $0 < a < b < \infty$?
6. Consider a Bayesian version of the normal linear model where $Y | \beta \sim N_n(X\beta, I)$, $X \in \mathbb{R}^{n \times p}$ is a fixed matrix of predictors (not necessarily with full column rank) and β has prior $\beta \sim N_p(0, \lambda^{-1}I)$ for a fixed $\lambda > 0$. Find the posterior mean of β .

7. Consider the Bayesian model $X | \theta \sim N_p(\theta, I)$ where $p \geq 3$ and $\theta \in \mathbb{R}^p$ has prior $\theta \sim N_p(0, \tau^2 I)$ and τ^2 is deterministic.

(a) Suppose first that τ^2 is known. Show that the posterior mean $\bar{\theta}$ is given by

$$\bar{\theta}(X) := (1 - \gamma) X$$

where $\gamma := (\tau^2 + 1)^{-1}$.

(b) Now suppose τ^2 is unknown. Find the marginal distribution of X (as a function of γ) and show that

$$\hat{\gamma} := \frac{p - 2}{\|X\|^2}$$

satisfies $\mathbb{E}_\gamma(\hat{\gamma}) = \gamma$. [Hint: If $Z \sim \chi_p^2$ then $\mathbb{E}(Z^{-1}) = (p - 2)^{-1}$.] What does this have to do with the James–Stein estimator?

8. Let $X \sim N_p(\theta, I)$ with $p \geq 3$. Show that the risk of the James–Stein estimator $\hat{\theta}_{JS}$ satisfies

$$R(\hat{\theta}_{JS}, \theta) \leq p - \frac{(p - 2)^2}{p - 2 + \|\theta\|^2}.$$

[Hint: Let $Z_1, Z_2, \dots \stackrel{\text{i.i.d.}}{\sim} N(0, 1)$. If $K \sim \text{Pois}(\mu^2/2)$ independently of the Z_j , then

$$(Z_1 + \mu)^2 \quad \text{and} \quad \sum_{j=1}^{1+2K} Z_j^2$$

have the same distribution.]

9. Let $X \sim N_p(\theta, I)$ where $\theta \in \Theta = \mathbb{R}^p, p \geq 3$. Consider estimators

$$\tilde{\theta}^{(c)} = \left(1 - c \frac{p - 2}{\|X\|^2}\right) X, \quad 0 < c < 2,$$

for θ , under the risk function $R(\delta, \theta) = \mathbb{E}_\theta \|\delta(X) - \theta\|^2$.

(a) Show that the James–Stein estimator $\tilde{\theta}^{(1)}$ dominates all estimators $\tilde{\theta}^{(c)}, c \neq 1$.

(b) Let $\hat{\theta}$ be the maximum likelihood estimator of θ . Show that, for any $0 < c < 2$,

$$\sup_{\theta \in \Theta} R(\tilde{\theta}^{(c)}, \theta) = \sup_{\theta \in \Theta} R(\hat{\theta}, \theta).$$

10. Consider $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} N(\theta, 1)$ with $\theta \in \Theta = \mathbb{R}$. The *Hodges' estimator*

$$\tilde{\theta}_n := \bar{X}_n \mathbb{1}_{\{|\bar{X}_n| \geq n^{-1/4}\}},$$

is equal to the maximum likelihood estimator \bar{X}_n of θ whenever $|\bar{X}_n| \geq n^{-1/4}$ and is zero otherwise.

(a) Find the asymptotic distribution of $\sqrt{n}(\tilde{\theta}_n - \theta)$ for each $\theta \in \mathbb{R}$ and show moreover that when $\theta = 0$,

$$\lim_{n \rightarrow \infty} n \mathbb{E}_\theta[(\tilde{\theta}_n - \theta)^2] = 0.$$

(b) Show however that

$$\limsup_{n \rightarrow \infty} \limsup_{\theta \in \Theta} n \mathbb{E}_\theta[(\tilde{\theta}_n - \theta)^2] = \infty.$$

11. (i) Let ϕ and Φ denote the standard Gaussian pdf and cdf respectively. If $Z \sim N(\mu, \sigma^2)$, then

$$\mathbb{E}[Z \mid Z \in (a, b)] = \mu + \frac{\phi(\alpha) - \phi(\beta)}{\Phi(\beta) - \Phi(\alpha)} \sigma$$

where

$$\alpha := \frac{a - \mu}{\sigma} \quad \text{and} \quad \beta := \frac{b - \mu}{\sigma}.$$

[You need not show this.] Suppose now that $\zeta \sim N(\mu, 1)$ and $a < 0 < b$. Explain why

$$\mu - \frac{\phi(\mu)}{\Phi(-\mu)} \leq \mathbb{E}[\zeta \mid \zeta \in (a, b)] \leq \mu + \frac{\phi(\mu)}{\Phi(\mu)}.$$

[Hint: Use the fact that $x \mapsto \phi(x)/\Phi(x)$ is decreasing.]

(ii) In the setting of Question 10 show that the maximum likelihood estimator is “only asymptotically beatable on arbitrarily small sets of θ -values” in the following sense: given $a < b$, any sequence of estimators $\hat{\theta}_n := \hat{\theta}_n(X_1, \dots, X_n)$ has

$$\liminf_{n \rightarrow \infty} \sup_{\theta \in (a, b)} n \mathbb{E}_\theta[(\hat{\theta}_n - \theta)^2] \geq 1.$$

[Hint: Consider a π -Bayes estimator for an appropriate prior π . You may find the fact that $\int_{-\infty}^{\infty} \phi(x)^3 / \Phi(x)^2 dx < \infty$ useful.]