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1. Find the Fisher information for θ ∈ (0, 1) in the model X1, . . . , Xn
i.i.d.∼ Bern(θ) where

θ ∈ [0, 1]. Show that the MLE is unbiased and achieves the Cramér–Rao lower bound.

2. Find the Fisher Information matrix I(β, σ2) in the normal linear model Y = Xβ + ε
where X ∈ Rn×p is a deterministic matrix of predictors with full column rank, β ∈ Rp

and σ2 > 0. Show that the MLE β̂ for β is unbiased and achieves the Cramér–Rao lower
bound.

3. Suppose we wish to estimate the mean µ of a random variable X ∼ N(µ, 1) and we can
either do this using data formed of (i) n i.i.d. copies X1, . . . , Xn of X; or (ii) N > n i.i.d.
observations W1, . . . ,WN each having distribution equal to that of sgn(X). Suppose that
it is expected that |µ| ≤ M . By considering the Fisher information, explain why we might
choose option (ii) over option (i) when

N >
Φ(M)Φ(−M)

ϕ2(M)
n,

where ϕ and Φ are the standard normal density and distribution functions respectively.
[You may assume Φ(µ)Φ(−µ)/ϕ2(µ) is increases as |µ| increases.]

4. Prove that an unbiased estimator θ̂(X) ∈ R achieves the Cramér–Rao lower bound if and
only if (almost surely)

θ̂ = θ + I(θ)−1S(θ).

[Hint: Recall that for random variables U, V with E(U2), E(V 2) < ∞, we have (E(UV ))2 ≤
E(U2)E(V 2), with equality if and only if U = cV almost surely, for some c ∈ R.]

5. Suppose we have pairs

(Y1, X1), . . . , (Yn, Xn)
i.i.d.∼ N2

((
µ1

µ2

)
,

(
σ2
1 ρ
ρ σ2

2

)
︸ ︷︷ ︸

=:Σ

)
,

where Σ is positive definite, and we are interested in estimating µ1.

(a) Consider first the setting where (only) Σ is known. Find the MLE of µ1 in this
case and show that it is unbiased and achieves the Cramér–Rao lower bound v1 for
estimating µ1.

(b) Now suppose that both Σ and µ2 are known. Find the Cramér–Rao lower bound v2
in this case and show that v2 ≤ v1 with equality if and only if ρ = 0. Show that the
MLE is given by

Ȳ − ρ

σ2
2

(X̄ − µ2)

and that it is unbiased and achieves the bound v2.

[Hint: It may help to use the fact that for ∇x(x
⊤Ax) = (A+A⊤)x for a matrix A ∈ Rd×d

and vector x ∈ Rd.]

1



6. Suppose we have data i.i.d. copies of X1, . . . , Xn of a random variable X ∈ R assumed to
follow the model X = µ + ε, where ε ∼ tν ; we wish to estimate the unknown parameter
µ ∈ R and the degrees of freedom ν > 2 is known to us. Show that

Varµ(X̄)

I−1
n (µ)

=
ν(ν + 1)

(ν − 2)(ν + 3)
.

[Hint: The following facts may be of use. If A ∼ χ2
k, then E(A−1) = (k − 2)−1 provided

k > 2. Now if B ∼ χ2
l and A and B are independent, then

A

A+B
∼ Beta(k/2, l/2),

a Beta distribution with parameters k/2 and l/2, provided k, l > 0. If Z ∼ Beta(a, b) then

E(Z) =
a

a+ b
Var(Z) =

ab

(a+ b)2(a+ b+ 1)
.

Also the tν distribution has density proportional to

f(x) = (1 + x2/ν)−(ν+1)/2.

]

7. (a) Suppose that random vectors Xn
p→ X and Yn

p→ Y . Show that (Xn, Yn)
p→ (X,Y ).

(b) Give an example to show that we can have Xn
d→ X and Yn

d→ Y , but (Xn, Yn) does
not converge in distribution.

(c) Show that if random vectors Xn
d→ c for some deterministic constant c ∈ Rd, then

Xn
p→ c.

(d) Show that for a sequence of real-valued random variables (Xn)n∈N, we have Xn
p→ 0

if and only if E(min(|Xn|,M)) → 0 for some M > 0. Give an example to show that

we can have Xn
p→ 0 but E|Xn| → ∞.

8. Show the following, where (Xn)n∈N is a sequence of random vectors taking values in Rd.

(a) If Xn
d→ X and Ωn is a sequence of events with P(Ωn) → 1, then Xn1Ωn

d→ X.

(b) If rn(Xn − θ) converges in distribution for some θ ∈ Rd and rn → ∞, then Xn
p→ θ.

9. Consider the setting of Question 5 but where we do not make assumptions on the distri-
bution of each of the i.i.d. pairs (Yi, Xi) beyond the existence of their covariance matrix.
Show that the sample covariance

ρ̂ :=
1

n

n∑
i=1

(Yi − Ȳ )(Xi − X̄)

satisfies ρ̂
p→ ρ.

10. We continue with the setting in Question 9, but with our target of interest being µ1 =
E(Y1) as in Question 5.

(i) Write down an estimator µ̂
(1)
1 that satisfies

√
n(µ̂

(1)
1 − µ1)

d→ N(0, σ2
1).
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(ii) Now suppose that Σ and µ2 are known. Find an estimator satisfying

√
n(µ̂

(2)
1 − µ1)

d→ N

(
0, σ2

1 −
ρ2

σ2
2

)
.

(iii) Now suppose that only µ2 is known. Find an estimator µ̂
(3)
1 satisfying the same

distributional convergence result as in part (ii).

(iv) Finally, consider the setting where neither µ2 nor Σ are known exactly, but we have

an additional N i.i.d. copies of X1. Find an estimator µ̂
(4)
1 that in the asymptotic

regime where n = o(N), satisfies the same distributional convergence result as in
part (ii).

11. In this question, we consider a random design regression setting where we have available
data i.i.d. (Y1, X1), . . . , (Yn, Xn) ∈ R×Rp, and study the asymptotic behaviour of the OLS
estimator β̂ := (X⊤X)−1X⊤Y , where X ∈ Rn×p is the matrix with ith row Xi ∈ Rp and
Y := (Y1, . . . , Yn)

⊤; writing Ωn := { 1
nX

⊤X is invertible}, on the event Ωc
n we (arbitrarily)

define β̂ = 0.

(i) Let Σ := E(X1X
⊤
1 ) be finite and suppose that Σ is invertible. Show that 1

nX
⊤X

p→ Σ
and explain why P(Ωn) → 1.

(ii) Now suppose E(Y1 |X1) = β⊤X1 and let εi := Yi − β⊤Xi so E(εi |Xi) = 0. Let
Γ := Cov(ε1X1) ∈ Rp×p be finite. Show that

√
n(β̂ − β)

d→ Np(0,Σ
−1ΓΣ−1).

What happens when εi and Xi are in fact independent?

(iii) We now make no assumption on the conditional expectation of Y1 given X1, but de-
fine ρ = E(X1Y1) ∈ Rp, β := Σ−1ρ (and retain the definition of εi and the assumption
on Γ from above). Show that with our new β, we have the same distributional result
as above.

*(iv)* Finally, writing Xi = (Wi, Zi) ∈ R × Rp−1, in the setting of the previous part,
suppose we have a partially linear model where

E(Yi |Wi, Zi) = Wiθ + f(Zi)

and E(f(Zi)
2) < ∞. Suppose additionally that E(Wi |Zi) = Z⊤

i γ. Show that writing
θ̂ for the first component of β̂, we have

√
n(θ̂ − θ)

d→ N(0, (Σ−1ΓΣ−1)11).

[Hint: Aim to compute relevant parts of Σ and ρ and use the matrix identity that
for M ∈ Rp×p, b ∈ Rp and a ∈ R,(

a b⊤

b M

)−1

=

(
s−1 −s−1b⊤M−1

−s−1M−1b M−1 + s−1M−1bb⊤M−1

)
,

where s := a− b⊤M−1b > 0 provided the matrix on the left is indeed invertible.]
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