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Questions by courtesy of Richard Nickl

Throughout, for observations X arising from a parametric model {f(·, θ) : θ ∈ Θ},Θ ⊆ R,
the quadratic risk of a decision rule δ(X) is defined to be R(δ, θ) = Eθ(δ(X)− θ)2.

1. Consider X|θ ∼ Poisson(θ), where θ ∈ Θ = [0,∞), and suppose the prior for θ is a
Gamma distribution with parameters (α, λ). Show that the posterior distribution θ|X is also a
Gamma distribution and find its parameters.

2. For n ∈ N fixed, suppose X is binomially Bin(n, θ)-distributed, where θ ∈ Θ = [0, 1].
(a) Consider a prior for θ from a Beta(a, b) distribution, where a, b > 0. Show that the

posterior distribution is Beta(a+X, b+n−X), and compute the posterior mean θ̄n(X) = E(θ|X).
(b) Show that the maximum likelihood estimator for θ is not identical to the posterior mean

with “ignorant” uniform prior θ ∼ U [0, 1].
(c) Assuming that X is sampled from a fixed Bin(n, θ0) distribution with θ0 ∈ (0, 1), derive

the asymptotic distribution of
√
n(θ̄n(X)− θ0) as n→∞.

3. Let X1, . . . , Xn be i.i.d. copies of a random variable X, and consider the Bayesian model
X|θ ∼ N(θ, 1) with prior π as θ ∼ N(µ, v2). For 0 < α < 1, consider the credible interval

Cn = {θ ∈ R : |θ − Eπ(θ|X1, . . . , Xn)| ≤ Rn} ,

where Rn is chosen such that π(Cn|X1, . . . , Xn) = 1 − α. Now assume X ∼ N(θ0, 1) for some
fixed θ0 ∈ R, and show that, as n→∞, PN

θ0
(θ0 ∈ Cn)→ 1− α.

4. In a general decision problem, show that (a) a decision rule δ that has constant risk and
is admissible is also minimax, and (b) any unique Bayes rule is admissible.

5. Consider an observation X from a parametric model {f(·, θ) : θ ∈ Θ} with prior π on
Θ ⊆ R and a general risk function R(δ, θ) = EθL(δ(X), θ). Assume that there exists some
decision rule δ0 such that R(δ0, θ) <∞ for all θ ∈ Θ.

(a) For the loss function L(a, θ) = |a− θ|, show that the Bayes rule associated with π equals
any median of the posterior distribution π(·|X).

(b) For weight function w : Θ → [0,∞) and loss function L(a, θ) = w(θ)[a − θ]2, show that
the Bayes rule δπ associated with π is unique and equals

δπ(X) =
Eπ[w(θ)θ|X]

Eπ[w(θ)|X]
,

assuming that the expectations in the last ratio exist and are finite, and Eπ[w(θ)|X] > 0.

6. (a) Considering X1, . . . , Xn i.i.d. from a N(θ, 1)-model with θ ∈ Θ = R, show that the
maximum likelihood estimator is not a Bayes rule for estimating θ in quadratic risk for any prior
distribution π.

(b) Let X ∼ Bin(n, θ), where θ ∈ Θ = [0, 1]. Find all prior distributions π on Θ for which
the maximum likelihood estimator is a Bayes rule for estimating θ in quadratic risk.

7. Consider estimating θ ∈ Θ = [0, 1] in a Bin(n, θ) model under the quadratic risk.
(a) Find the unique minimax estimator θ̃n of θ, and deduce that the maximum likelihood

estimator θ̂n of θ is not minimax for a fixed sample size n ∈ N. [Hint: Find first a Bayes rule
with constant risk in θ ∈ Θ.]
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(b) Show, however, that the maximum likelihood estimator dominates θ̃n in the large sample
limit by proving that, as n→∞,

lim
n

supθ R(θ̂n, θ)

supθ R(θ̃n, θ)
= 1

and

lim
n

R(θ̂n, θ)

R(θ̃n, θ)
< 1 for all θ ∈ [0, 1], θ 6= 1

2
.

8. Consider X1, . . . , Xn i.i.d. from a N(θ, 1) model, where θ ∈ Θ = [0,∞). Show that the
sample mean X̄n is inadmissible for quadratic risk, but that it is still minimax. What happens
if Θ = [a, b] for some 0 < a < b <∞?

9. Let X be multivariate normal N(θ, I), where θ ∈ Θ = Rp, p ≥ 3, and I is the p×p identity
matrix. Consider estimators

θ̃(c) =

(
1− c p− 2

‖X‖2

)
X, 0 < c < 2,

for θ, under the risk function R(δ, θ) = Eθ‖δ(X) − θ‖2, where ‖ · ‖ is the standard Euclidean
norm on Rp.

(a) Show that the James-Stein estimator θ̃(1) dominates all estimators θ̃(c), c 6= 1.

(b) Let θ̂ be the maximum likelihood estimator of θ. Show that, for any 0 < c < 2,

sup
θ∈Θ

R(θ̃(c), θ) = sup
θ∈Θ

R(θ̂, θ).

10. Consider X1, . . . , Xn i.i.d. from a N(θ, 1) model with θ ∈ Θ = R, and recall the Hodges’
estimator

θ̃n = X̄n1{|X̄n| ≥ n−1/4},

equal to the maximum likelihood estimator X̄n of θ whenever |X̄n| ≥ n−1/4, and zero otherwise.
Derive the asymptotic distribution of

√
n(θ̃n − θ) as n → ∞ under Pθ for every θ ∈ Θ, and

compare it to the asymptotic distribution of
√
n(X̄n−θ). Now compute the asymptotic maximal

risk
lim
n

sup
θ∈Θ

Eθ[
√
n(Tn − θ)]2

for both Tn = X̄n and Tn = θ̃n.
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