PRINCIPLES OF STATISTICS – EXAMPLES 3/4

Part II, Michaelmas 2022, Po-Ling Loh (email: pll28@cam.ac.uk) Questions by courtesy of Richard Nickl

Throughout, for observations X arising from a parametric model $\{f(\cdot, \theta) : \theta \in \Theta\}, \Theta \subseteq \mathbb{R}$, the quadratic risk of a decision rule $\delta(X)$ is defined to be $R(\delta, \theta) = E_{\theta}(\delta(X) - \theta)^2$.

1. Consider $X|\theta \sim Poisson(\theta)$, where $\theta \in \Theta = [0, \infty)$, and suppose the prior for θ is a Gamma distribution with parameters (α, λ) . Show that the posterior distribution $\theta|X$ is also a Gamma distribution and find its parameters.

2. For $n \in \mathbb{N}$ fixed, suppose X is binomially $Bin(n, \theta)$ -distributed, where $\theta \in \Theta = [0, 1]$.

(a) Consider a prior for θ from a Beta(a, b) distribution, where a, b > 0. Show that the posterior distribution is Beta(a+X, b+n-X), and compute the posterior mean $\overline{\theta}_n(X) = E(\theta|X)$.

(b) Show that the maximum likelihood estimator for θ is *not* identical to the posterior mean with "ignorant" uniform prior $\theta \sim U[0, 1]$.

(c) Assuming that X is sampled from a fixed $Bin(n, \theta_0)$ distribution with $\theta_0 \in (0, 1)$, derive the asymptotic distribution of $\sqrt{n}(\bar{\theta}_n(X) - \theta_0)$ as $n \to \infty$.

3. Let X_1, \ldots, X_n be i.i.d. copies of a random variable X, and consider the Bayesian model $X | \theta \sim N(\theta, 1)$ with prior π as $\theta \sim N(\mu, v^2)$. For $0 < \alpha < 1$, consider the credible interval

$$C_n = \left\{ \theta \in \mathbb{R} : |\theta - E^{\pi}(\theta | X_1, \dots, X_n)| \le R_n \right\},\$$

where R_n is chosen such that $\pi(C_n|X_1, \ldots, X_n) = 1 - \alpha$. Now assume $X \sim N(\theta_0, 1)$ for some fixed $\theta_0 \in \mathbb{R}$, and show that, as $n \to \infty$, $P_{\theta_0}^{\mathbb{N}}(\theta_0 \in C_n) \to 1 - \alpha$.

4. In a general decision problem, show that (a) a decision rule δ that has constant risk and is admissible is also minimax, and (b) any unique Bayes rule is admissible.

5. Consider an observation X from a parametric model $\{f(\cdot, \theta) : \theta \in \Theta\}$ with prior π on $\Theta \subseteq \mathbb{R}$ and a general risk function $R(\delta, \theta) = E_{\theta}L(\delta(X), \theta)$. Assume that there exists some decision rule δ_0 such that $R(\delta_0, \theta) < \infty$ for all $\theta \in \Theta$.

(a) For the loss function $L(a, \theta) = |a - \theta|$, show that the Bayes rule associated with π equals any median of the posterior distribution $\pi(\cdot|X)$.

(b) For weight function $w : \Theta \to [0, \infty)$ and loss function $L(a, \theta) = w(\theta)[a - \theta]^2$, show that the Bayes rule δ_{π} associated with π is unique and equals

$$\delta_{\pi}(X) = \frac{E^{\pi}[w(\theta)\theta|X]}{E^{\pi}[w(\theta)|X]},$$

assuming that the expectations in the last ratio exist and are finite, and $E^{\pi}[w(\theta)|X] > 0$.

6. (a) Considering X_1, \ldots, X_n i.i.d. from a $N(\theta, 1)$ -model with $\theta \in \Theta = \mathbb{R}$, show that the maximum likelihood estimator is *not* a Bayes rule for estimating θ in quadratic risk for any prior distribution π .

(b) Let $X \sim Bin(n,\theta)$, where $\theta \in \Theta = [0,1]$. Find all prior distributions π on Θ for which the maximum likelihood estimator is a Bayes rule for estimating θ in quadratic risk.

7. Consider estimating $\theta \in \Theta = [0, 1]$ in a $Bin(n, \theta)$ model under the quadratic risk.

(a) Find the unique minimax estimator $\hat{\theta}_n$ of θ , and deduce that the maximum likelihood estimator $\hat{\theta}_n$ of θ is *not* minimax for a fixed sample size $n \in \mathbb{N}$. [Hint: Find first a Bayes rule with constant risk in $\theta \in \Theta$.]

(b) Show, however, that the maximum likelihood estimator dominates $\tilde{\theta}_n$ in the large sample limit by proving that, as $n \to \infty$,

$$\lim_{n} \frac{\sup_{\theta} R(\theta_n, \theta)}{\sup_{\theta} R(\tilde{\theta}_n, \theta)} = 1$$

and

$$\lim_{n} \frac{R(\hat{\theta}_{n}, \theta)}{R(\tilde{\theta}_{n}, \theta)} < 1 \text{ for all } \theta \in [0, 1], \theta \neq \frac{1}{2}$$

8. Consider X_1, \ldots, X_n i.i.d. from a $N(\theta, 1)$ model, where $\theta \in \Theta = [0, \infty)$. Show that the sample mean \overline{X}_n is inadmissible for quadratic risk, but that it is still minimax. What happens if $\Theta = [a, b]$ for some $0 < a < b < \infty$?

9. Let X be multivariate normal $N(\theta, I)$, where $\theta \in \Theta = \mathbb{R}^p$, $p \ge 3$, and I is the $p \times p$ identity matrix. Consider estimators

$$\tilde{\theta}^{(c)} = \left(1 - c \frac{p-2}{\|X\|^2}\right) X, \ 0 < c < 2,$$

for θ , under the risk function $R(\delta, \theta) = E_{\theta} \|\delta(X) - \theta\|^2$, where $\|\cdot\|$ is the standard Euclidean norm on \mathbb{R}^p .

(a) Show that the James-Stein estimator $\tilde{\theta}^{(1)}$ dominates all estimators $\tilde{\theta}^{(c)}, c \neq 1$.

(b) Let $\hat{\theta}$ be the maximum likelihood estimator of θ . Show that, for any 0 < c < 2,

$$\sup_{\theta \in \Theta} R(\hat{\theta}^{(c)}, \theta) = \sup_{\theta \in \Theta} R(\hat{\theta}, \theta).$$

10. Consider X_1, \ldots, X_n i.i.d. from a $N(\theta, 1)$ model with $\theta \in \Theta = \mathbb{R}$, and recall the Hodges' estimator

$$\tilde{\theta}_n = \bar{X}_n \mathbb{1}\{|\bar{X}_n| \ge n^{-1/4}\}$$

equal to the maximum likelihood estimator \bar{X}_n of θ whenever $|\bar{X}_n| \ge n^{-1/4}$, and zero otherwise. Derive the asymptotic distribution of $\sqrt{n}(\tilde{\theta}_n - \theta)$ as $n \to \infty$ under P_{θ} for every $\theta \in \Theta$, and compare it to the asymptotic distribution of $\sqrt{n}(\bar{X}_n - \theta)$. Now compute the asymptotic maximal risk

$$\lim_{n} \sup_{\theta \in \Theta} E_{\theta} [\sqrt{n} (T_n - \theta)]^2$$

for both $T_n = \bar{X}_n$ and $T_n = \tilde{\theta}_n$.