PRINCIPLES OF STATISTICS - EXAMPLES 3/4

Part II, Michaelmas 2022, Po-Ling Loh (email: pll28@cam.ac.uk)
Questions by courtesy of Richard Nickl
Throughout, for observations X arising from a parametric model $\{f(\cdot, \theta): \theta \in \Theta\}, \Theta \subseteq \mathbb{R}$, the quadratic risk of a decision rule $\delta(X)$ is defined to be $R(\delta, \theta)=E_{\theta}(\delta(X)-\theta)^{2}$.

1. Consider $X \mid \theta \sim \operatorname{Poisson}(\theta)$, where $\theta \in \Theta=[0, \infty)$, and suppose the prior for θ is a Gamma distribution with parameters (α, λ). Show that the posterior distribution $\theta \mid X$ is also a Gamma distribution and find its parameters.
2. For $n \in \mathbb{N}$ fixed, suppose X is binomially $\operatorname{Bin}(n, \theta)$-distributed, where $\theta \in \Theta=[0,1]$.
(a) Consider a prior for θ from a $\operatorname{Beta}(a, b)$ distribution, where $a, b>0$. Show that the posterior distribution is $\operatorname{Beta}(a+X, b+n-X)$, and compute the posterior mean $\bar{\theta}_{n}(X)=E(\theta \mid X)$.
(b) Show that the maximum likelihood estimator for θ is not identical to the posterior mean with "ignorant" uniform prior $\theta \sim U[0,1]$.
(c) Assuming that X is sampled from a fixed $\operatorname{Bin}\left(n, \theta_{0}\right)$ distribution with $\theta_{0} \in(0,1)$, derive the asymptotic distribution of $\sqrt{n}\left(\bar{\theta}_{n}(X)-\theta_{0}\right)$ as $n \rightarrow \infty$.
3. Let X_{1}, \ldots, X_{n} be i.i.d. copies of a random variable X, and consider the Bayesian model $X \mid \theta \sim N(\theta, 1)$ with prior π as $\theta \sim N\left(\mu, v^{2}\right)$. For $0<\alpha<1$, consider the credible interval

$$
C_{n}=\left\{\theta \in \mathbb{R}:\left|\theta-E^{\pi}\left(\theta \mid X_{1}, \ldots, X_{n}\right)\right| \leq R_{n}\right\}
$$

where R_{n} is chosen such that $\pi\left(C_{n} \mid X_{1}, \ldots, X_{n}\right)=1-\alpha$. Now assume $X \sim N\left(\theta_{0}, 1\right)$ for some fixed $\theta_{0} \in \mathbb{R}$, and show that, as $n \rightarrow \infty, P_{\theta_{0}}^{\mathbb{N}}\left(\theta_{0} \in C_{n}\right) \rightarrow 1-\alpha$.
4. In a general decision problem, show that (a) a decision rule δ that has constant risk and is admissible is also minimax, and (b) any unique Bayes rule is admissible.
5. Consider an observation X from a parametric model $\{f(\cdot, \theta): \theta \in \Theta\}$ with prior π on $\Theta \subseteq \mathbb{R}$ and a general risk function $R(\delta, \theta)=E_{\theta} L(\delta(X), \theta)$. Assume that there exists some decision rule δ_{0} such that $R\left(\delta_{0}, \theta\right)<\infty$ for all $\theta \in \Theta$.
(a) For the loss function $L(a, \theta)=|a-\theta|$, show that the Bayes rule associated with π equals any median of the posterior distribution $\pi(\cdot \mid X)$.
(b) For weight function $w: \Theta \rightarrow[0, \infty)$ and loss function $L(a, \theta)=w(\theta)[a-\theta]^{2}$, show that the Bayes rule δ_{π} associated with π is unique and equals

$$
\delta_{\pi}(X)=\frac{E^{\pi}[w(\theta) \theta \mid X]}{E^{\pi}[w(\theta) \mid X]},
$$

assuming that the expectations in the last ratio exist and are finite, and $E^{\pi}[w(\theta) \mid X]>0$.
6. (a) Considering X_{1}, \ldots, X_{n} i.i.d. from a $N(\theta, 1)$-model with $\theta \in \Theta=\mathbb{R}$, show that the maximum likelihood estimator is not a Bayes rule for estimating θ in quadratic risk for any prior distribution π.
(b) Let $X \sim \operatorname{Bin}(n, \theta)$, where $\theta \in \Theta=[0,1]$. Find all prior distributions π on Θ for which the maximum likelihood estimator is a Bayes rule for estimating θ in quadratic risk.
7. Consider estimating $\theta \in \Theta=[0,1]$ in a $\operatorname{Bin}(n, \theta)$ model under the quadratic risk.
(a) Find the unique minimax estimator $\tilde{\theta}_{n}$ of θ, and deduce that the maximum likelihood estimator $\hat{\theta}_{n}$ of θ is not minimax for a fixed sample size $n \in \mathbb{N}$. [Hint: Find first a Bayes rule with constant risk in $\theta \in \Theta$.]
(b) Show, however, that the maximum likelihood estimator dominates $\tilde{\theta}_{n}$ in the large sample limit by proving that, as $n \rightarrow \infty$,

$$
\lim _{n} \frac{\sup _{\theta} R\left(\hat{\theta}_{n}, \theta\right)}{\sup _{\theta} R\left(\tilde{\theta}_{n}, \theta\right)}=1
$$

and

$$
\lim _{n} \frac{R\left(\hat{\theta}_{n}, \theta\right)}{R\left(\tilde{\theta}_{n}, \theta\right)}<1 \text { for all } \theta \in[0,1], \theta \neq \frac{1}{2}
$$

8. Consider X_{1}, \ldots, X_{n} i.i.d. from a $N(\theta, 1)$ model, where $\theta \in \Theta=[0, \infty)$. Show that the sample mean \bar{X}_{n} is inadmissible for quadratic risk, but that it is still minimax. What happens if $\Theta=[a, b]$ for some $0<a<b<\infty$?
9. Let X be multivariate normal $N(\theta, I)$, where $\theta \in \Theta=\mathbb{R}^{p}, p \geq 3$, and I is the $p \times p$ identity matrix. Consider estimators

$$
\tilde{\theta}^{(c)}=\left(1-c \frac{p-2}{\|X\|^{2}}\right) X, 0<c<2
$$

for θ, under the risk function $R(\delta, \theta)=E_{\theta}\|\delta(X)-\theta\|^{2}$, where $\|\cdot\|$ is the standard Euclidean norm on \mathbb{R}^{p}.
(a) Show that the James-Stein estimator $\tilde{\theta}^{(1)}$ dominates all estimators $\tilde{\theta}^{(c)}, c \neq 1$.
(b) Let $\hat{\theta}$ be the maximum likelihood estimator of θ. Show that, for any $0<c<2$,

$$
\sup _{\theta \in \Theta} R\left(\tilde{\theta}^{(c)}, \theta\right)=\sup _{\theta \in \Theta} R(\hat{\theta}, \theta)
$$

10. Consider X_{1}, \ldots, X_{n} i.i.d. from a $N(\theta, 1)$ model with $\theta \in \Theta=\mathbb{R}$, and recall the Hodges' estimator

$$
\tilde{\theta}_{n}=\bar{X}_{n} 1\left\{\left|\bar{X}_{n}\right| \geq n^{-1 / 4}\right\}
$$

equal to the maximum likelihood estimator \bar{X}_{n} of θ whenever $\left|\bar{X}_{n}\right| \geq n^{-1 / 4}$, and zero otherwise. Derive the asymptotic distribution of $\sqrt{n}\left(\tilde{\theta}_{n}-\theta\right)$ as $n \rightarrow \infty$ under P_{θ} for every $\theta \in \Theta$, and compare it to the asymptotic distribution of $\sqrt{n}\left(\bar{X}_{n}-\theta\right)$. Now compute the asymptotic maximal risk

$$
\lim _{n} \sup _{\theta \in \Theta} E_{\theta}\left[\sqrt{n}\left(T_{n}-\theta\right)\right]^{2}
$$

for $\operatorname{both} T_{n}=\bar{X}_{n}$ and $T_{n}=\tilde{\theta}_{n}$.

