PRINCIPLES OF STATISTICS - EXAMPLES 1/4

Part II, Michaelmas 2022, Po-Ling Loh (email: pll28@cam.ac.uk)
Questions by courtesy of Richard Nickl
Throughout, the abbreviations "i.i.d.," "pdf/pmf," and "MLE" stand for "independent and identically distributed," "probability density/mass function," and "maximum likelihood estimator," respectively. A normal distribution in \mathbb{R}^{d} with mean vector μ and covariance matrix Σ is denoted by $N_{d}(\mu, \Sigma)$, and $N\left(\mu, \sigma^{2}\right)$ corresponds to the univariate case $d=1$.

1. Consider an i.i.d. sample X_{1}, \ldots, X_{n} of random variables. For each of the following parametric models of $\mathrm{pmf} / \mathrm{pdfs}$, find the MLE of the unknown parameter, the score equation, and the Fisher information.
a) $X_{i} \sim^{\text {i.i.d. }} \operatorname{Bernoulli(\theta),~} \theta \in[0,1]$,
b) $X_{i} \sim_{\text {i.i.d. }} N(\theta, 1), \theta \in \mathbb{R}$,
c) $X_{i} \sim^{i . i . d .} N(0, \theta), \theta \in(0, \infty)$,
d) $X_{i} \sim^{\text {i.i.d. }} N\left(\mu, \sigma^{2}\right), \theta=\left(\mu, \sigma^{2}\right)^{T} \in \mathbb{R} \times(0, \infty)$,
e) $X_{i} \sim^{i . i . d .} \operatorname{Poisson}(\theta), \theta \in(0, \infty)$,
f) $X_{i} \sim^{\text {i.i.d. }}$ from model $\{f(\cdot, \theta): \theta \in(0, \infty)\}$ with $\operatorname{pdf} f(x, \theta)=(1 / \theta) e^{-x / \theta}, x \geq 0$.
g) $X_{i} \sim^{i . i . d .}$ from model $\{f(\cdot, \theta): \theta \in(0, \infty)\}$ with pdf $f(x, \theta)=\theta e^{-\theta x}, x \geq 0$.
2. In which of the examples in the previous exercise is the MLE unbiased (i.e., does one have $E_{\theta} \hat{\theta}=\theta$ for all $\left.\theta \in \Theta\right)$? When unbiased, deduce whether or not the variance of the MLE attains the Cramér-Rao lower bound.
3. Let X_{1}, \ldots, X_{n} be i.i.d. Poisson random variables with parameter $\theta>0$, and let $\bar{X}_{n}=$ $(1 / n) \sum_{i=1}^{n} X_{i}$ and $S_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$. Show that $\operatorname{Var}\left(\bar{X}_{n}\right) \leq \operatorname{Var}\left(S_{n}^{2}\right)$.
4. Find the MLE for an i.i.d. sample X_{1}, \ldots, X_{n} arising from the models (a) $N(\theta, 1)$, where $\theta \in \Theta=[0, \infty)$, and (b) $N(\theta, \theta)$, where $\theta \in \Theta=(0, \infty)$.
5. Consider an i.i.d. sample X_{1}, \ldots, X_{n} arising from the model

$$
\{f(\cdot, \theta): \theta \in \mathbb{R}\}, \quad f(x, \theta)=\frac{1}{2} e^{-|x-\theta|}, x \in \mathbb{R}
$$

of Laplace distributions. Assuming n to be odd for simplicity, show that the MLE is equal to the sample median. Discuss what happens when n is even. Can you calculate the Fisher information?
6. Consider observing an $n \times 1$ random vector $Y \sim N_{n}(X \theta, I)$, where X is a non-stochastic $n \times p$ matrix of full column rank, $\theta \in \Theta=\mathbb{R}^{p}$ for $p \leq n$, and I is the $n \times n$ identity matrix. Compute the MLE and find its distribution. Calculate the Fisher information for this model and compare it to the variance of the MLE. Deduce, as a special case, the form of the MLE and Fisher information in the case when $p=n$ and $X=I$.
7. Let P_{θ} be the law of a $N_{p}(\theta, I)$ distribution on \mathbb{R}^{p} with identity covariance matrix I and mean vector θ. For fixed $\theta_{0} \in \mathbb{R}^{p}$, compute the Kullback-Leibler divergence $K L\left(P_{\theta_{0}}, P_{\theta}\right)$.
8. Let $\left(X, X_{n}: n \in \mathbb{N}\right)$ be random vectors in \mathbb{R}^{k}.
(a) Prove that $X_{n} \rightarrow^{P} X$ as $n \rightarrow \infty$ if and only if each vector component $X_{n, j}, j=1, \ldots, k$, of X_{n} converges in probability to the corresponding vector component X_{j} of X as $n \rightarrow \infty$. Formulate and prove an analogous result for random $k \times k$ matrices.
(b) Suppose $E\left\|X_{n}-X\right\| \rightarrow 0$ as $n \rightarrow \infty$, where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^{k}. Deduce that $X_{n} \rightarrow^{P} X$ as $n \rightarrow \infty$.
(c) Show that the converse in (b) is false, i.e., give an example of real random variables such that $X_{n} \rightarrow^{P} X$ as $n \rightarrow \infty$, but $E\left|X_{n}-X\right| \nrightarrow 0$.
9. Given X_{1}, \ldots, X_{n} i.i.d. random variables such that $E X_{1}=0$ and $E X_{1}^{2} \in(0, \infty)$, the Student's t-statistic is given by

$$
t_{n}=\frac{\sqrt{n} \bar{X}_{n}}{S_{n}}, \quad \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} .
$$

Show that $t_{n} \rightarrow^{d} N(0,1)$ as $n \rightarrow \infty$. Assuming now that $E X_{1}=\mu \in \mathbb{R}$, deduce an asymptotic level $1-\alpha$ confidence interval for $E X_{1}$.
10. For the examples from Exercise 1, derive directly (without using the general asymptotic theory for MLEs) the asymptotic distribution of $\sqrt{n}\left(\hat{\theta}_{M L E}-\theta\right)$ as $n \rightarrow \infty$.
11. Suppose one observes one random vector $X=\left(X_{1}, X_{2}\right)^{T}$ from a bivariate normal distribution $N_{2}(\theta, \Sigma)$, where $\theta=\left(\theta_{1}, \theta_{2}\right)^{T}$ and Σ is an arbitrary but known 2×2 positive definite covariance matrix.
(a) Compute the Cramér-Rao lower bound for estimating the first coefficient θ_{1} if (i) θ_{2} is known and (ii) if θ_{2} is unknown.
(b) Show that the two bounds in (a) coincide when Σ is a diagonal matrix.
(c) Show that the bound in (a)(i) is always less than or equal to the bound in (a)(ii), and give an information-theoretic interpretation of this result.

