PRINCIPLES OF STATISTICS - EXAMPLES 2/4

Part II, Michaelmas 2021, Po-Ling Loh (email: pll28@cam.ac.uk) Questions by courtesy of Richard Nickl

Throughout, the term "asymptotic" refers to a large-sample limit as $n \to \infty$ under a sampling distribution $P_{\theta} = P_{\theta}^{\mathbb{N}}$ where, unless otherwise specified, θ is assumed to be a fixed element of the parameter space $\Theta \subseteq \mathbb{R}^p$.

- **1.** Let $\Theta \subseteq \mathbb{R}$ have nonempty interior, and let $\{S_n\}$ be a sequence of random real-valued continuous functions defined on Θ such that, as $n \to \infty$, $S_n(\theta) \to^P S(\theta) \, \forall \theta \in \Theta$, where $S: \Theta \to \mathbb{R}$ is nonrandom. Suppose that for some θ_0 in the interior of Θ and every $\varepsilon > 0$ small enough, we have $S(\theta_0 \pm \varepsilon) < 0 < S(\theta_0 \mp \varepsilon)$, and also that S_n has exactly one zero $\hat{\theta}_n$ for every $n \in \mathbb{N}$. Deduce that $\hat{\theta}_n \to^P \theta_0$ as $n \to \infty$.
 - **2.** Consider an i.i.d. sample X_1, \ldots, X_n arising from the model

$$\left\{ f(x,\theta) = \theta x^{\theta-1} \exp\{-x^{\theta}\}, x > 0, \theta \in (0,\infty) \right\}$$

of Weibull distributions. Show that the MLE exists with probability one and is consistent. [Hint: Use the previous exercise. You may interchange differentiation $d/d\theta$ and dx-integration without justification in your argument.]

- **3.** Give an example of functions $\{Q_n\}$ and Q defined on $\Theta \subseteq \mathbb{R}$ which have unique maximizers $\{\hat{\theta}_n\}$ and θ_0 , respectively, such that $Q_n(\theta) \to Q(\theta)$ for every $\theta \in \Theta$ as $n \to \infty$, but $\hat{\theta}_n \not\to \theta_0$.
- **4.** Consider the maximum likelihood estimator $\hat{\theta}$ from X_1, \ldots, X_n i.i.d. $N(\theta, 1)$ where $\theta \in \Theta = [0, \infty)$. Show that $\sqrt{n}(\hat{\theta} \theta)$ is asymptotically normal whenever $\theta > 0$. What happens when $\theta = 0$? Comment on your findings in light of the general asymptotic theory for maximum likelihood estimators.
- **5.** Let X_1, \ldots, X_n be i.i.d. random variables from a uniform distribution $U[0, \theta]$ with $\theta \in \Theta = (0, \infty)$. Find the maximum likelihood estimator $\hat{\theta}$ of θ and show that $\tilde{\theta} = \frac{n+1}{n}\hat{\theta}$ is unbiased for θ . Find the variance of $\tilde{\theta}$, compare it to what the Cramér-Rao inequality predicts, and discuss your findings. Finally, find the asymptotic distribution of $n(\hat{\theta} \theta)$.
- **6.** Suppose one is given a parametric model $\{f(\cdot,\theta):\theta\in\Theta\}$ with likelihood function $L(\theta)$ and corresponding maximum likelihood estimator $\hat{\theta}_{MLE}$, and consider a mapping $\Phi:\Theta\to F$, where Θ and F are subsets of \mathbb{R} .
- (a) Assuming Φ is injective, show that a maximum likelihood estimator of ϕ in the model $\{f(\cdot,\phi):\phi=\Phi(\theta) \text{ for some } \theta\in\Theta\}$ equals $\Phi(\hat{\theta}_{MLE})$.
- (b) Now consider a mapping Φ that is not necessarily injective. Define the induced likelihood function $L^*(\phi) = \sup_{\theta:\Phi(\theta)=\phi} L(\theta)$ and show that $\Phi(\hat{\theta}_{MLE})$ is a maximum likelihood estimator of ϕ (that is, show that $\Phi(\hat{\theta}_{MLE})$ maximizes $L^*(\phi)$).
- (c) Based on n repeated observations of a random variable X from one of the following parametric models, find the maximum likelihood estimator of the parameter ϕ : (i) $\phi = Var(X)$ in a Poisson(θ) model, (ii) $\phi = Var(X)$ in a Bernoulli(θ) model, and (iii) $\phi = (EX)^2$ in a $N(\theta, 1)$ model.
- 7. Consider the parameter $\phi = EX^4$ equal to the fourth moment of a $N(0,\theta)$ distribution. Find the MLE $\hat{\phi}$ of ϕ and derive the asymptotic distribution of $\sqrt{n}(\hat{\phi} \phi)$ as $n \to \infty$.

8. Let $\hat{\theta}$ be the maximum likelihood estimator in a model $\{f(\cdot,\theta):\Theta\subset\mathbb{R}^p\}$ arising from an i.i.d. sample X_1,\ldots,X_n . Assuming the model satisfies the regularity conditions from lectures, ensuring in particular the asymptotic normality of $\sqrt{n}(\hat{\theta}-\theta)$ under P_{θ} , derive the asymptotic distribution of the random variable

$$W_n = n(\hat{\theta} - \theta)^T i_n(\hat{\theta} - \theta)$$

under P_{θ} , where i_n equals either $i_n(\theta)$ or $i_n(\hat{\theta})$, and $i_n(\theta)$ denotes the observed Fisher information matrix at θ . From this limiting result: (i) derive a test for the hypothesis $H_0: \theta = \theta_0$ vs. $H_1 = \Theta \setminus \{\theta_0\}$ which has asymptotic type I error at most α ; and (ii) deduce that the confidence ellipsoid

$$C_n = \{ \theta \in \mathbb{R}^p : (\hat{\theta} - \theta)^T i_n(\hat{\theta}) (\hat{\theta} - \theta) \le z_{\alpha}/n \}$$

has asymptotic coverage level $1-\alpha$, where z_{α} denotes the $(1-\alpha)$ -quantile of the limit distribution derived above.

- **9.** Consider the parametric models from Exercise 1 on Sheet 1 with corresponding parameter space Θ . For all these models, derive explicit expressions for the likelihood ratio test statistic of a simple hypothesis test of $H_0: \theta = \theta_0, \theta_0 \in \Theta$, vs. $H_1 = \Theta \setminus \{\theta_0\}$.
- **10.** For σ^2 a fixed positive constant, consider $X_1, \ldots, X_n | \theta \sim^{i.i.d} N(\theta, \sigma^2)$ with prior distribution $\theta \sim N(\mu, v^2)$, where $\mu \in \mathbb{R}$ and $v^2 > 0$. Show that the posterior distribution of θ given the observations is

$$\theta|X_1,\dots,X_n \sim N\left(\frac{\frac{n\bar{X}}{\sigma^2} + \frac{\mu}{v^2}}{\frac{n}{\sigma^2} + \frac{1}{v^2}}, \frac{1}{\frac{n}{\sigma^2} + \frac{1}{v^2}}\right), \text{ where } \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i.$$

11. Consider $X_1, \ldots, X_n | \mu, \sigma^2$ i.i.d. $N(\mu, \sigma^2)$ with improper prior density $\pi(\mu, \sigma)$ proportional to σ^{-2} (constant in μ). Argue that the resulting "posterior distribution" has a density proportional to

$$\sigma^{-(n+2)} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \right\},$$

and thus, the distribution of $\mu|\sigma^2, X_1, \ldots, X_n$ is $N(\bar{X}, \sigma^2/n)$, where $\bar{X} = (1/n) \sum_{i=1}^n X_i$. When $0 < \alpha < 1$ and assuming σ^2 is known, construct a level $1 - \alpha$ credible set for the posterior distribution $\mu|\sigma^2, X_1, \ldots, X_n$ that is also an exact level $1 - \alpha$ (frequentist) confidence set.