Principles of Statistics

Part II - Michaelmas 2018

Example Sheet 3

Lecturer: Quentin Berthet

Throughout, for observations X arising from a parametric model on $\Theta \subseteq \mathbf{R}$ given by $\{f(\cdot,\theta):\theta\in\Theta\}$,, the quadratic risk of a decision rule $\delta(X)$ is defined as the risk of the squared loss $R(\delta,\theta)=\mathbf{E}_{\theta}[(\delta(X)-\theta)^2]$.

- **1.** Consider $X|\theta \sim \operatorname{Poisson}(\theta), \theta \in \Theta = [0, \infty)$, and suppose the prior for θ is a Gamma distribution with parameters α, λ . Show that the posterior distribution $\theta|X$ is also a Gamma distribution and find its parameters.
 - **2.** For $n \in \mathbb{N}$ fixed, suppose X is binomially Bin (n, θ) -distributed where $\theta \in [0, 1]$.
- a) Consider a prior for θ from a Beta(a,b), a,b > 0, distribution. Show that the posterior distribution Π is Beta(a+X,b+n-X) and compute the posterior mean given by $\bar{\theta}_n(X) = \mathbf{E}_{\Pi}[\theta|X]$.
- b) Show that the maximum likelihood estimator for θ is *not* identical to the posterior mean with 'ignorant' uniform prior $\theta \sim U[0, 1]$.
- c) Assuming that X is sampled from a fixed $Bin(n, \theta_0), \theta_0 \in (0, 1)$, distribution, derive the asymptotic distribution of $\sqrt{n}(\bar{\theta}_n(X) \theta_0)$ as $n \to \infty$.
- **3.** Let X_1, \ldots, X_n be i.i.d. copies of a random variable X and consider the Bayesian model $X|\theta \sim \mathcal{N}(\theta, 1)$ with prior π as $\theta \sim \mathcal{N}(\mu, v^2)$. For $0 < \alpha < 1$, consider the credible interval

$$C_n = \{\theta \in \mathbb{R} : |\theta - \mathbf{E}_{\Pi}[\theta|X_1,\dots,X_n]| \le R_n\}$$

where R_n is chosen such that $\Pi(C_n|X_1,\ldots,X_n)=1-\alpha$. Now assume $X\sim N(\theta_0,1)$ for some fixed $\theta_0\in\mathbb{R}$, and show that, as $n\to\infty$, $P_{\theta_0}^{\mathbb{N}}(\theta_0\in C_n)\to 1-\alpha$.

- **4.** In a general decision problem, show that a) a decision rule δ that has constant risk and is admissible is also minimax; b) any unique Bayes rule is admissible.
- 5. Consider an observation X from a parametric model $\{f(\cdot,\theta):\theta\in\Theta\}$ with prior π on $\Theta\subseteq\mathbb{R}$ and a general risk function $R(\delta,\theta)=\mathbf{E}_{\theta}[L(\delta(X),\theta)]$. Assume that there exists some decision rule δ_0 such that $R(\delta_0,\theta)<\infty$ for all $\theta\in\Theta$.
- a) For the loss function $L(a, \theta) = |a \theta|$ show that the Bayes rule associated to π equals any median of the posterior distribution $\Pi(\cdot|X)$.
- b) For weight function $w: \Theta \to [0, \infty)$ and loss function $L(a, \theta) = w(\theta)[a \theta]^2$ show that the Bayes rule δ_{π} associated to π is unique and equals

$$\delta_{\pi}(X) = \frac{\mathbf{E}_{\Pi}[w(\theta)\theta|X]}{\mathbf{E}_{\Pi}[w(\theta)|X]},$$

assuming that expectations in the last ratio exist, are finite, and that $\mathbf{E}_{\Pi}[w(\theta)|X] > 0$.

- **6.** a) Considering X_1, \ldots, X_n i.i.d. from a $\mathcal{N}(\theta, 1)$ -model with $\theta \in \Theta = \mathbb{R}$, show that the maximum likelihood estimator is *not* a Bayes rule for estimating θ in quadratic risk for any prior distribution π .
- b) Let $X \sim \text{Bin}(n, \theta)$ where $\theta \in \Theta = [0, 1]$. Find all prior distributions π on Θ for which the maximum likelihood estimator is a Bayes rule for estimating θ in quadratic risk.
 - 7. Consider estimation of $\theta \in \Theta = [0,1]$ in a Bin (n,θ) model under quadratic risk.
- a) Find the unique minimax estimator $\tilde{\theta}_n$ of θ and deduce that the maximum likelihood estimator $\hat{\theta}_n$ of θ is *not* minimax for fixed sample size $n \in \mathbb{N}$. [Hint: Find first a Bayes rule of risk constant in $\theta \in \Theta$.]
- b) Show, however, that the maximum likelihood estimator dominates $\tilde{\theta}_n$ in the large sample limit by proving that, as $n \to \infty$,

$$\lim_{n} \frac{\sup_{\theta} R(\hat{\theta}_{n}, \theta)}{\sup_{\theta} R(\tilde{\theta}_{n}, \theta)} = 1$$

and that

$$\lim_{n} \frac{R(\hat{\theta}_{n}, \theta)}{R(\tilde{\theta}_{n}, \theta)} < 1 \text{ for all } \theta \in [0, 1], \theta \neq \frac{1}{2}.$$

- **8.** Consider X_1, \ldots, X_n i.i.d. from a $\mathcal{N}(\theta, 1)$ -model where $\theta \in \Theta = [0, \infty)$. Show that the sample mean \bar{X}_n is inadmissible for quadratic risk, but that it is still minimax. What happens if $\Theta = [a, b]$ for some $0 < a < b < \infty$?
- **9.** Let X be multivariate normal $\mathcal{N}(\theta, I)$ where $\theta \in \Theta = \mathbb{R}^p, p \geq 3$, and where I is the $p \times p$ identity matrix. Consider estimators

$$\tilde{\theta}^{(c)} = \left(1 - c \frac{p-2}{\|X\|^2}\right) X, \ 0 < c < 2,$$

for θ , under the risk function $R(\delta, \theta) = \mathbf{E}_{\theta} ||\delta(X) - \theta||^2$ where $||\cdot||$ is the standard Euclidean norm on \mathbb{R}^p .

- a) Show that the James-Stein estimator $\tilde{\theta}^{(1)}$ dominates all estimators $\tilde{\theta}^{(c)}, c \neq 1$.
- b) Let $\hat{\theta}$ be the maximum likelihood estimator of θ . Show that, for any 0 < c < 2,

$$\sup_{\theta \in \Theta} R(\tilde{\theta}^{(c)}, \theta) = \sup_{\theta \in \Theta} R(\hat{\theta}, \theta).$$

10. Consider X_1, \ldots, X_n i.i.d. from a $\mathcal{N}(\theta, 1)$ -model with $\theta \in \Theta = \mathbb{R}$ and recall the Hodges' estimator, equal to the maximum likelihood estimator \bar{X}_n of θ whenever $|\bar{X}_n| \geq n^{-1/4}$ and zero otherwise. Recall the asymptotic distribution of $\sqrt{n}(\tilde{\theta}_n - \theta)$ as

 $n \to \infty$ under P_{θ} for every $\theta \in \Theta$, and compare it to the asymptotic distribution of $\sqrt{n}(\bar{X}_n - \theta)$. Now compute the asymptotic maximal risk

$$\lim_{n} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \left[\left(\sqrt{n} (T_{n} - \theta) \right)^{2} \right]$$

for both $T_n = \bar{X}_n$ and $T_n = \tilde{\theta}_n$.