Principles of Statistics Part II - Michaelmas 2017

Example Sheet 1
Lecturer: Quentin Berthet

Throughout, the abbreviations ‘i.i.d.”, ‘p.d.f./p.m.f.” and ‘MLE’ stand for ‘indepen-
dent and identically distributed’, ‘probability density/mass function’ and ‘maximum
likelihood estimator’, respectively. A normal distribution in R? with mean vector y and
covariance matrix ¥ is denoted by N (p, ).

1. Consider an i.i.d. sample X, ..., X, of random variables. For each of the following
parametric models of p.m.f/p.d.f.’s, find the MLE of the unknown parameter, the score
equation and the Fisher information.

a) X; ~“4 Bernoulli(6),0 € [0, 1],

b) X; ~44- N(0,1),0 € R,

c) X; ~+d A(0,0),0 € (0,00),

d) X; ~Hd N (p,0%),0 = (u,02)T € R x (0,00),

e) X; ~“4 Poisson(0), 6 € (0, 00),

f) X; ~*4 from model {f(-,6) : 0 € (0,00)} with pdf f(x,0) = (1/0)e /%, x > 0.

g) X; ~*“4 from model {f(-,0) : 6 € (0,00)} with pdf f(x,0) = e~ x> 0.

2. a) Show that the proof of the Cramer-Rao lower bound in the lectures for n = 1
extends to general n > 1.

b) In which of the examples of the previous exercise is the MLE unbiased (i.e., does

one have Ey[f] = 0 for all § € ©)? When unbiased, deduce whether the variance of the
MLE attains the Cramer-Rao lower bound or not.

3. Let Xy,..., X, be iid. Poisson random variables with parameter 6 > 0, and let
X,=1/n)> 0" X, 82 =(n—1)"' 3" (X; — X,,)% Show that Var(X,) < Var(S2).

4. Find the MLE for an i.i.d. sample X, ..., X,, arising from the models a) A(6,1)
where § € © = [0,00) and b) N (6,0) where § € © = (0, 0).
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5. Consider an i.i.d. sample Xj,..., X, arising from the model
1
{f(ae) 0 e R}? f(l',e) = 567@79‘7% S R7

of Laplace distributions. Assuming n to be odd for simplicity, show that the MLE is
equal to the sample median. Discuss what happens when n is even. Can you calculate
the Fisher information?

6. Consider observing an n x 1 random vector Y ~ N(X#,I) where X is a non-
stochastic n x p matrix of full column rank, where § € © = RP for p < n, and where [
is the n x n identity matrix. Compute the MLE and find its distribution. Calculate the
Fisher information for this model and compare it to the variance of the MLE. Deduce,
as a special case, the form of the MLE and Fisher information in the case when p =n
and X = [.

7. Let (X, X,, : n € N) be random vectors in R¥.

a) Prove that X,, =7 X as n — oo if and only if each vector component X, ;, for
g =1,...,k, of X,, converges in probability to the corresponding vector component
X, of X as n — oo. Formulate and prove an analogous result for random symmetric
k x k-matrices.

b) Suppose E||X,, — X|| — 0 as n — oo where || - || is the Euclidean norm on R*.
Deduce that X,, =¥ X as n — oc.

¢) Show that the converse in b) is false, that is, give an example of real random
variables X,, =7 X as n — oo but E|X,, — X| /4 0.

8. Given X1, ..., X,, i.i.d. random variables such that E[X;] = 0, E[X?] € (0, 00), the
Student t-statistic is given by
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Show that ¢, —¢ N(0,1) as n — oco. Assuming now E[X;] = p € R, deduce an

asymptotic level 1 — « confidence interval for E[X;].

9. For the examples from Exercise 1, derive directly (WithoAut using the general asymp-
totic theory for MLEs) the asymptotic distribution of \/n(fyz — 6) as n — oc.

10. Suppose one observes one random vector X = (X, X5)” from a bivariate normal
distribution Ny(,3) where 6 = (0;,6,)" and where ¥ is an arbitrary but known 2 x 2
positive definite covariance matrix.

i) Compute the Cramer-Rao lower bound for estimating the first coefficient 6, if a)
05 is known and b) if 8, is unknown.



ii) Show that the two bounds in i) coincide when ¥ is a diagonal matrix.

iii) Show that the bound in i)a) is always less than or equal to the bound in i)b), and
give an information-theoretic interpretation of this result.



