PRINCIPLES OF STATISTICS – EXAMPLES 3/4

Part II, Michaelmas 2016, Quentin Berthet (email: q.berthet@statslab.cam.ac.uk)

Throughout, for observations X arising from a parametric model $\{f(\cdot, \theta) : \theta \in \Theta\}, \Theta \subseteq \mathbb{R}$, the quadratic risk of a decision rule $\delta(X)$ is defined to be $R(\delta, \theta) = E_{\theta}(\delta(X) - \theta)^2$.

1. Consider $X|\theta \sim Poisson(\theta), \theta \in \Theta = [0, \infty)$, and suppose the prior for θ is a Gamma distribution with parameters α, λ . Show that the posterior distribution $\theta|X$ is also a Gamma distribution and find its parameters.

2. For $n \in \mathbb{N}$ fixed, suppose X is binomially $Bin(n, \theta)$ -distributed where $\theta \in \Theta = [0, 1]$.

a) Consider a prior for θ from a Beta(a, b), a, b > 0, distribution. Show that the posterior distribution is Beta(a + X, b + n - X) and compute the posterior mean $\bar{\theta}_n(X) = E(\theta|X)$.

b) Show that the maximum likelihood estimator for θ is *not* identical to the posterior mean with 'ignorant' uniform prior $\theta \sim U[0, 1]$.

c) Assuming that X is sampled from a fixed $Bin(n, \theta_0), \theta_0 \in (0, 1)$, distribution, derive the asymptotic distribution of $\sqrt{n}(\bar{\theta}_n(X) - \theta_0)$ as $n \to \infty$.

3. Let X_1, \ldots, X_n be i.i.d. copies of a random variable X and consider the Bayesian model $X | \theta \sim N(\theta, 1)$ with prior π as $\theta \sim N(\mu, v^2)$. For $0 < \alpha < 1$, consider the credible interval

$$C_n = \{\theta \in \mathbb{R} : |\theta - E^{\pi}(\theta | X_1, \dots, X_n)| \le R_n\}$$

where R_n is chosen such that $\pi(C_n|X_1, \ldots, X_n) = 1 - \alpha$. Now assume $X \sim N(\theta_0, 1)$ for some fixed $\theta_0 \in \mathbb{R}$, and show that, as $n \to \infty$, $P_{\theta_0}^{\mathbb{N}}(\theta_0 \in C_n) \to 1 - \alpha$.

4. In a general decision problem, show that a) a decision rule δ that has constant risk and is admissible is also minimax; b) any unique Bayes rule is admissible.

5. Consider an observation X from a parametric model $\{f(\cdot, \theta) : \theta \in \Theta\}$ with prior π on $\Theta \subseteq \mathbb{R}$ and a general risk function $R(\delta, \theta) = E_{\theta}L(\delta(X), \theta)$. Assume that there exists some decision rule δ_0 such that $R(\delta_0, \theta) < \infty$ for all $\theta \in \Theta$.

a) For the loss function $L(a, \theta) = |a - \theta|$ show that the Bayes rule associated to π equals any median of the posterior distribution $\pi(\cdot|X)$.

b) For weight function $w: \Theta \to [0, \infty)$ and loss function $L(a, \theta) = w(\theta)[a - \theta]^2$ show that the Bayes rule δ_{π} associated to π is unique and equals

$$\delta_{\pi}(X) = \frac{E^{\pi}[w(\theta)\theta|X]}{E^{\pi}[w(\theta)|X]},$$

assuming that the expectations in the last ratio exist, are finite, and that $E^{\pi}[w(\theta)|X] > 0$.

6. a) Considering X_1, \ldots, X_n i.i.d. from a $N(\theta, 1)$ -model with $\theta \in \Theta = \mathbb{R}$, show that the maximum likelihood estimator is *not* a Bayes rule for estimating θ in quadratic risk for any prior distribution π .

b) Let $X \sim Bin(n, \theta)$ where $\theta \in \Theta = [0, 1]$. Find all prior distributions π on Θ for which the maximum likelihood estimator is a Bayes rule for estimating θ in quadratic risk.

7. Consider estimation of $\theta \in \Theta = [0, 1]$ in a $Bin(n, \theta)$ model under quadratic risk.

a) Find the unique minimax estimator $\hat{\theta}_n$ of θ and deduce that the maximum likelihood estimator $\hat{\theta}_n$ of θ is *not* minimax for fixed sample size $n \in \mathbb{N}$. [Hint: Find first a Bayes rule of risk constant in $\theta \in \Theta$.]

b) Show, however, that the maximum likelihood estimator dominates $\tilde{\theta}_n$ in the large sample limit by proving that, as $n \to \infty$,

$$\lim_{n} \frac{\sup_{\theta} R(\theta_n, \theta)}{\sup_{\theta} R(\tilde{\theta}_n, \theta)} = 1$$

and that

$$\lim_{n} \frac{R(\hat{\theta}_{n}, \theta)}{R(\tilde{\theta}_{n}, \theta)} < 1 \text{ for all } \theta \in [0, 1], \theta \neq \frac{1}{2}.$$

8. Consider X_1, \ldots, X_n i.i.d. from a $N(\theta, 1)$ -model where $\theta \in \Theta = [0, \infty)$. Show that the sample mean \overline{X}_n is inadmissible for quadratic risk, but that it is still minimax. What happens if $\Theta = [a, b]$ for some $0 < a < b < \infty$?

9. Let X be multivariate normal $N(\theta, I)$ where $\theta \in \Theta = \mathbb{R}^p, p \ge 3$, and where I is the $p \times p$ identity matrix. Consider estimators

$$\tilde{\theta}^{(c)} = \left(1 - c \frac{p-2}{\|X\|^2}\right) X, \ 0 < c < 2,$$

for θ , under the risk function $R(\delta, \theta) = E_{\theta} \|\delta(X) - \theta\|^2$ where $\|\cdot\|$ is the standard Euclidean norm on \mathbb{R}^p .

a) Show that the James-Stein estimator $\tilde{\theta}^{(1)}$ dominates all estimators $\tilde{\theta}^{(c)}, c \neq 1$.

b) Let $\hat{\theta}$ be the maximum likelihood estimator of θ . Show that, for any 0 < c < 2,

$$\sup_{\theta \in \Theta} R(\hat{\theta}^{(c)}, \theta) = \sup_{\theta \in \Theta} R(\hat{\theta}, \theta).$$

10. For σ^2 a fixed positive constant, consider $X_1, \ldots, X_n | \theta \sim^{i.i.d} N(\theta, \sigma^2)$ with prior distribution $\theta \sim N(\mu, v^2), \mu \in \mathbb{R}, v^2 > 0$. Show that the posterior distribution of θ given the observations is

$$\theta|X_1, \dots, X_n \sim N\left(\frac{\frac{n\bar{X}}{\sigma^2} + \frac{\mu}{v^2}}{\frac{n}{\sigma^2} + \frac{1}{v^2}}, \frac{1}{\frac{n}{\sigma^2} + \frac{1}{v^2}}\right), \text{ where } \bar{X} = \frac{1}{n}\sum_{i=1}^n X_i.$$

11. Consider $X_1, \ldots, X_n | \mu, \sigma^2$ i.i.d. $N(\mu, \sigma^2)$ with *improper prior* density $\pi(\mu, \sigma)$ proportional to σ^{-2} (constant in μ). Argue that the resulting 'posterior distribution' has a density proportional to

$$\sigma^{-(n+2)} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right\},\$$

and that thus the distribution of $\mu | \sigma^2, X_1, \ldots, X_n$ is $N(\bar{X}, \sigma^2/n)$, where $\bar{X} = (1/n) \sum_{i=1}^n X_i$. For $0 < \alpha < 1$ and assuming σ^2 is known, construct a level $1 - \alpha$ credible set for the posterior distribution $\mu | \sigma^2, X_1, \ldots, X_n$ that is also an exact level $1 - \alpha$ (frequentist) confidence set.

12. Consider X_1, \ldots, X_n i.i.d. from a $N(\theta, 1)$ -model with $\theta \in \Theta = \mathbb{R}$ and recall the Hodges' estimator, equal to the maximum likelihood estimator \bar{X}_n of θ whenever $|\bar{X}_n| \ge n^{-1/4}$ and zero otherwise. Recall the asymptotic distribution of $\sqrt{n}(\tilde{\theta}_n - \theta)$ as $n \to \infty$ under P_{θ} for every $\theta \in \Theta$, and compare it to the asymptotic distribution of $\sqrt{n}(\bar{X}_n - \theta)$. Now compute the asymptotic maximal risk

$$\lim_{n} \sup_{\theta \in \Theta} E_{\theta} [\sqrt{n} (T_n - \theta)]^2$$

for both $T_n = \overline{X}_n$ and $T_n = \tilde{\theta}_n$.