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Throughout, for observations X arising from a parametric model {f(-,0) : § € ©},0 C R,
the quadratic risk of a decision rule (X)) is defined to be R(8,0) = Ey(6(X) — 0)2.

1. Consider X|0 ~ Poisson (0),0 € © = [0,00), and suppose the prior for § is a Gamma
distribution with parameters «, A. Show that the posterior distribution #|X is also a Gamma
distribution and find its parameters.

2. For n € N fixed, suppose X is binomially Bin(n,§)-distributed where 6§ € © = [0, 1].

a) Consider a prior for § from a Beta(a,b),a,b > 0, distribution. Show that the posterior
distribution is Beta(a + X,b+n — X) and compute the posterior mean 6,,(X) = E(6|X).

b) Show that the maximum likelihood estimator for 6 is not identical to the posterior mean
with ‘ignorant’ uniform prior 6 ~ U0, 1].

c¢) Assuming that X is sampled from a fixed Bin(n,6p),0 € (0,1), distribution, derive the
asymptotic distribution of v/n(6,,(X) — 6p) as n — co.

3. Let X1,...,X,, beii.d. copies of a random variable X and consider the Bayesian model
X160 ~ N(0,1) with prior m as  ~ N(u,v?). For 0 < a < 1, consider the credible interval

Co={0€R:|0—E"(0|X1,...,Xn)| < Ry}

where R, is chosen such that 7(C,|X1,...,X,) =1 — a. Now assume X ~ N(f,1) for some
fixed 6y € R, and show that, as n — oo, ng}(@o eC,) —1—qa.

4. In a general decision problem, show that a) a decision rule § that has constant risk and is
admissible is also minimax; b) any unique Bayes rule is admissible.

5. Consider an observation X from a parametric model {f(-,0) : § € ©} with prior 7 on
© C R and a general risk function R(6,0) = EpL(6(X),0). Assume that there exists some
decision rule dy such that R(dg,0) < oo for all § € ©.

a) For the loss function L(a, ) = |a — 6| show that the Bayes rule associated to m equals any
median of the posterior distribution (-] X).

b) For weight function w : © — [0, 00) and loss function L(a,#) = w(6)[a — 0]? show that the
Bayes rule §, associated to 7 is unique and equals

Em[w(6)0]X]

"N = @)

assuming that the expectations in the last ratio exist, are finite, and that E™[w(6)|X] > 0.

6. a) Considering X1,..., X, i.i.d. from a N(,1)-model with § € ® = R, show that the
maximum likelihood estimator is not a Bayes rule for estimating 6 in quadratic risk for any prior
distribution .

b) Let X ~ Bin(n,d) where § € © = [0, 1]. Find all prior distributions 7 on © for which the
maximum likelihood estimator is a Bayes rule for estimating 6 in quadratic risk.

7. Consider estimation of § € © = [0,1] in a Bin(n, ) model under quadratic risk.

a) Find the unique minimax estimator 0,, of 0 and deduce that the maximum likelihood
estimator @, of # is not minimax for fixed sample size n € N. [Hint: Find first a Bayes rule of
risk constant in 6 € ©.]



b) Show, however, that the maximum likelihood estimator dominates 0,, in the large sample
limit by proving that, as n — oo,

supy R(én, 0)

lim = =1
" supy R(6,,6)
and that R
by, 0 1
limRE~) <1 forall 6 €0,1],0 # 3
n n

8. Consider X, ..., X, i.i.d. from a N(6,1)-model where § € © = [0,00). Show that the
sample mean X, is inadmissible for quadratic risk, but that it is still minimax. What happens
if © = [a,b] for some 0 < a < b < c0?

9. Let X be multivariate normal N (0, ) where § € © = RP,p > 3, and where I is the p x p
identity matrix. Consider estimators
- —2
6l = (1—cp>X, 0<ec<2,
X112
for #, under the risk function R(d,0) = Ey||6(X) —0||? where ||| is the standard Euclidean norm
on RP.
a) Show that the James-Stein estimator /1) dominates all estimators #(¢), ¢ # 1.
b) Let 6 be the maximum likelihood estimator of . Show that, for any 0 < ¢ < 2,

sup R(é(c), 0) = sup R(é, 0).
0c® 0cO

10. For o2 a fixed positive constant, consider Xi,..., X,|0 ~**¢ N(6,02) with prior dis-

tribution  ~ N(u,v?),u € R,v? > 0. Show that the posterior distribution of § given the
observations is
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11. Consider X1,..., X,|u,0? iid. N(u,0?) with iémproper prior density m(u,o) propor-
tional to o~2 (constant in u). Argue that the resulting ‘posterior distribution’ has a density

proportional to
1 n
—(n+2) _ E X — 1)?
o eXp{ 202 1,:1( i /’6) } )

and that thus the distribution of ulo?, X1,..., X, is N(X,0?/n), where X = (1/n)> 1, X;.
For 0 < a < 1 and assuming o2 is known, construct a level 1 — a credible set for the posterior
distribution |02, X1,..., X, that is also an exact level 1 — a (frequentist) confidence set.

12. Consider Xy,...,X, iid. from a N(6,1)-model with § € © = R and recall the Hodges’
estimator, equal to the maximum likelihood estimator X,, of § whenever |X,,| > n~ 4 and zero
otherwise. Recall the asymptotic distribution of y/n (6, —6) as n — oo under P for every 6 € O,
and compare it to the asymptotic distribution of \/n(X, — ). Now compute the asymptotic
maximal risk

lim sup Eg[v/n(T;, — 0)]?
" 9co

for both T,, = X,, and T}, = 6,,.



