
PRINCIPLES OF STATISTICS – EXAMPLES 2/4

Part II, Michaelmas 2016, Quentin Berthet (email: q.berthet@statslab.cam.ac.uk)

Throughout the term ‘asymptotic’ always refers to a large sample limit as n → ∞ under
a sampling distribution Pθ = PN

θ where, unless specified otherwise, θ is assumed to be a fixed
element of the parameter space Θ ⊂ Rp. By a ‘regular parametric model’ we mean a statistical
model of probability density/mass functions {f(·, θ) : θ ∈ Θ} that satisfies the regularity condi-
tions from lectures, ensuring asymptotic normality of the maximum likelihood estimator (which
in turn may be used without proof in the solution of the respective exercise).

1. Let Θ ⊆ R have nonempty interior and let Sn be a sequence of random real-valued
continuous functions defined on Θ such that, as n→∞, Sn(θ)→P S(θ) ∀θ ∈ Θ, where S : Θ→ R
is nonrandom. Suppose for some θ0 in the interior of Θ and every ε > 0 small enough we have
S(θ0 − ε) < 0 < S(θ0 + ε), and that Sn has exactly one zero θ̂n for every n ∈ N. Deduce that

θ̂n →P θ0 as n→∞.

2. Give an example of (possibly random) functions Qn, Q defined on Θ ⊂ R that have unique

maximisers θ̂n, θ0, respectively, such Qn(θ) → Q(θ) (almost surely) for every θ ∈ Θ as n → ∞,

but θ̂n 6→ θ0 (almost surely).

3. Consider an i.i.d. sample X1, . . . , Xn arising from the model{
f(x, θ) = θxθ−1 exp{−xθ}, x > 0, θ ∈ (0,∞)

}
of Weibull distributions. Show that the MLE exists and is consistent.

4. Consider the maximum likelihood estimator θ̂ from X1, . . . , Xn i.i.d. N(θ, 1) where θ ∈
Θ = [0,∞). Show that

√
n(θ̂ − θ) is asymptotically normal whenever θ > 0. What happens

when θ = 0? Comment on your findings in light of the general asypmtotic theory for maximum
likelihood estimators.

5. Let X1, . . . , Xn be i.i.d. random variables from a uniform U(0, θ), θ ∈ Θ = (0,∞) distribu-
tion. Calculate the Fisher information for this model. Find the maximum likelihood estimator
θ̂ of θ and show that θ̃n = n+1

n θ̂ is unbiased for θ. Find the variance of θ̃n, compare it to
what the Cramèr-Rao inequality predicts, and discuss your findings. Finally find the asymptotic
distribution of n(θ̂ − θ).

6. Suppose one is given a regular parametric model {f(·, θ) : θ ∈ Θ} with likelihood function

L(θ) and corresponding maximum likelihood estimator θ̂MLE , and consider a mapping Φ : Θ→
F , where Θ, F are subsets of R.

a) Assuming that Φ is one to one, show that the maximum likelihood estimator of φ in the

model {f(·, φ) : φ = Φ(θ) for some θ ∈ Θ} equals Φ(θ̂MLE).

b) Now consider a mapping Φ that is not necessarily one-to-one. Define the induced likelihood

function L∗(φ) = supθ:Φ(θ)=φ L(θ) and show that Φ(θ̂MLE) is a maximum likelihood estimator

of φ (that is, show that Φ(θ̂MLE) maximises L∗(φ)).

c) Based on n repeated observations of a random variable X from one of the following para-
metric models, find the maximum likelihood estimator of the parameter φ: i) φ = V ar(X) in a
Poisson-θ model. ii) φ = V ar(X) in a Bernoulli-p-model, iii) φ = (EX)2 in a N(µ, σ2) model.
Which of these MLEs are unique?
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7. Consider the parameter φ = EX4 equal to the fourth moment of a N(0, θ) distribution.

Find the MLE φ̂ of φ and derive the asymptotic distribution of
√
n(φ̂−φ) as n→∞. Conjecture

a corresponding result for higher moments φm = EXm where m > 4 is an even integer.

8. In a regular parametric model with parameter space Θ ⊂ Rd, let θ̂ be the maximum
likelihood estimator arising from an i.i.d. sample X1, . . . , Xn. Derive the asymptotic distribution
of

Wn = n(θ̂ − θ)T in(θ̂ − θ)

under Pθ, where in equals either in(θ) or in(θ̂n) and where in(θ) is the observed Fisher information
matrix at θ. Deduce from this limiting result i) a test for the hypothesis H0 : θ = θ0 vs. H1 :
θ 6= θ0 that has type-one-errors of level at most α and ii) that the confidence ellipsoid

Cn = {θ ∈ Rd : (θ̂ − θ)T in(θ̂)(θ̂ − θ) ≤ zα/n}

has asymptotic coverage level 1− α for zα the 1− α-quantile constants of the limit distribution
derived above.

9. Consider the parametric models from Exercise on Sheet 1 with corresponding parameter
space Θ. For all these models, derive explicit expressions for the likelihood ratio test statistic
of a simple hypothesis H0 : θ = θ0, θ0 ∈ Θ vs. H1 : θ ∈ Θ, and deduce the corresponding test
statistics.

10. Consider the maximum likelihood estimator θ̂n of a sample of size n from a N(θ, 1)
model, θ ∈ R. Define the (‘Hodges’-) estimator

θ̃n = θ̂n1|θ̂n|≥n−1/4 .

Show that, under Pθ, θ 6= 0, one has
√
n(θ̃n − θ) →d N(0, 1), but that θ̃ is superefficient at

θ = 0, that is, under Pθ, θ = 0, one has
√
n(θ̃n − 0) →d N(0, 0), improving upon the maximum

likelihood estimator.
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