

Number Theory: Examples Sheet 3 of 4

Throughout this sheet, ϕ denotes the Euler totient function, μ the Möbius function, Λ the von Mangoldt function, ζ the Riemann zeta function, $\pi(n)$ the number of primes up to n , $\tau(n)$ the number of positive divisors of n , and $\sigma(n)$ the sum of the positive divisors of n .

1. Prove that for $\operatorname{Re}(s) > 1$, we have

$$\zeta(s)^2 = \sum_{n=1}^{\infty} \frac{\tau(n)}{n^s}.$$

Can you find Dirichlet series for $1/\zeta(s)$ and $\zeta(s-1)/\zeta(s)$ (for suitable values of s)?

2. Find all natural numbers n for which $\sigma(n) + \phi(n) = n\tau(n)$.
3. (i) Show that μ is multiplicative.
 (ii) Let f be a function defined on the natural numbers, and define g by $g(n) = \sum_{d|n} \mu(d)f(\frac{n}{d})$.
 Find an expression for f in terms of g .
 (iii) Find a relationship between μ and ϕ .
4. Compute $\sum_{d|n} \Lambda(d)$ for natural numbers n .
5. Use Legendre's formula to compute $\pi(207)$.
6. Let N be a positive integer greater than 1.
 - (i) Show that the exact power of a prime p dividing $N!$ is $\sum_{k=1}^{\infty} \lfloor \frac{N}{p^k} \rfloor$.
 - (ii) Prove the inequality $N! > (\frac{N}{e})^N$.
 - (iii) Deduce that

$$\sum_{p \leq N} \frac{\log p}{p-1} > (\log N) - 1.$$
7. Prove that if $N > 1$, then $\sum_{n=1}^N \frac{1}{n}$ is not an integer.
8. Prove that for every $n \geq 1$, the set of numbers $\{1, 2, \dots, 2n\}$ can be partitioned into pairs $\{a_1, b_1\}, \{a_2, b_2\}, \dots, \{a_n, b_n\}$ so that the sum $a_i + b_i$ of each pair is prime.
9. (Harder) Prove that every integer $N > 6$ can be expressed as a sum of distinct primes.
10. Calculate a_0, \dots, a_4 in the continued fraction expansions of e and π .
11. Let a be a positive integer. Determine explicitly the real number whose continued fraction is $[a, a, a, \dots]$.
12. Determine the continued fraction expansions of $\sqrt{3}, \sqrt{7}, \sqrt{13}, \sqrt{19}$.

13. Let d be a positive integer that is not a square. Let θ_n and p_n/q_n be the complete quotients and convergents arising in the continued fraction expansion of \sqrt{d} . Show that for all $n \geq 1$ we have $p_{n-1} - q_{n-1}\sqrt{d} = (-1)^n / \prod_{i=1}^n \theta_i$.

14. (i) Let $(p_j/q_j)_{j=0,\dots,n}$ be the convergents of the continued fraction $[a_0, \dots, a_n]$. Show that the $(n-1)$ th and n th convergents of $[a_n, \dots, a_0]$ are q_n/q_{n-1} and p_n/p_{n-1} , respectively.

(ii) Let $d > 1$ be a square-free integer, and let $\theta = r + s\sqrt{d}$ be a quadratic irrational with purely periodic continued fraction expansion $[\overline{a_1, \dots, a_n}]$. Show that $-1/\theta' = [\overline{a_n, \dots, a_1}]$, where $\theta' = r - s\sqrt{d}$ is the conjugate irrational.

15. (Optional, for enthusiasts of analysis) Let χ_4 be the non-trivial group homomorphism $(\mathbb{Z}/4\mathbb{Z})^\times \rightarrow \{\pm 1\}$. Show that

$$L(s, \chi_4) = 1 - \frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \frac{1}{9^s} - \frac{1}{11^s} + \dots$$

is a continuous function on $(0, \infty)$ with $L(1, \chi_4) \neq 0$. Use the Euler products to show that for $s > 1$ we have

$$\begin{aligned} \log \zeta(s) &= \sum_p \frac{1}{p^s} + g_1(s) \\ \log L(s, \chi_4) &= \sum_{p \neq 2} \frac{\chi_4(p)}{p^s} + g_2(s), \end{aligned}$$

where g_1 and g_2 are bounded functions. Deduce a special case of Dirichlet's theorem on primes in arithmetic progression.