Number Theory: Example Sheet 3 of 4

Throughout this sheet, ϕ denotes the Euler totient function, μ the Möbius function, $\tau(n)$ the number of positive divisors of n, and $\sigma(n)$ the sum of the positive divisors of n.

1. Prove that for $\operatorname{Re}(s)>1$, we have

$$
\zeta(s)^{2}=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}} .
$$

Can you find Dirichlet series for $1 / \zeta(s)$ and $\zeta(s-1) / \zeta(s)$ (for suitable values of s)?
2. Find all natural numbers n for which $\sigma(n)+\phi(n)=n \tau(n)$.
3. (i) Define the Möbius function μ, and check that it is multiplicative.
(ii) Let f be a function defined on the natural numbers, and define g by $g(n)=$ $\sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)$. Find an expression for f in terms of g.
(iii) Find a relationship between μ and ϕ.
4. Compute $\sum_{d \mid n} \Lambda(d)$ for natural numbers n. (Here Λ is the von Mangoldt function.)
5. Use Legendre's formula to compute $\pi(207)$.
6. Let N be a positive integer greater than 1 .
(i) Show that the exact power of a prime p dividing N ! is $\sum_{k=1}^{\infty}\left\lfloor\frac{N}{p^{k}}\right\rfloor$.
(ii) Prove the inequality $N!>\left(\frac{N}{e}\right)^{N}$.
(iii) Deduce that

$$
\sum_{p \leqslant N} \frac{\log p}{p-1}>(\log N)-1 .
$$

7. Prove that every non-constant polynomial with integer coefficients assumes infinitely many composite values.
8. Prove that every integer $N>6$ can be expressed as a sum of distinct primes. (One method is to find a strictly increasing sequence of integers $\left(a_{k}\right)$ such that every integer $6<N \leqslant a_{k}$ is a sum of distinct primes less than or equal to the k th prime.)
9. Prove that for every $n \geqslant 1$, the set of numbers $\{1,2, \ldots, 2 n\}$ can be partitioned into pairs $\left\{a_{1}, b_{1}\right\},\left\{a_{2}, b_{2}\right\}, \ldots,\left\{a_{n}, b_{n}\right\}$ so that the sum $a_{i}+b_{i}$ of each pair is prime.
10. Calculate a_{0}, \ldots, a_{4} in the continued fraction expansions of e and π.
11. Let a be a positive integer. Determine explicitly the real number whose continued fraction is $[a, a, a, \ldots]$.
12. Determine the continued fraction expansions of $\sqrt{3}, \sqrt{7}, \sqrt{13}, \sqrt{19}$.
13. Let d be a positive integer that is not a square. Let θ_{n} and p_{n} / q_{n} be the complete quotients and convergents arising in the continued fraction expansion of \sqrt{d}. Show that for all $n \geqslant 1$ we have $p_{n-1}-q_{n-1} \sqrt{d}=(-1)^{n} / \prod_{i=1}^{n} \theta_{i}$.
14. (Extra question, requires IB Analysis \& Topology.) Let χ_{4} be the non-trivial group homomorphism $(\mathbb{Z} / 4 \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$. Show that

$$
L\left(s, \chi_{4}\right)=1-\frac{1}{3^{s}}+\frac{1}{5^{s}}-\frac{1}{7^{s}}+\frac{1}{9^{s}}-\frac{1}{11^{s}}+\ldots
$$

is a continuous function on $(0, \infty)$ with $L\left(1, \chi_{4}\right) \neq 0$. Use the Euler products to show that for $s>1$ we have

$$
\begin{aligned}
\log \zeta(s) & =\sum_{p} \frac{1}{p^{s}}+g_{1}(s) \\
\log L\left(s, \chi_{4}\right) & =\sum_{p \neq 2} \frac{\chi_{4}(p)}{p^{s}}+g_{2}(s)
\end{aligned}
$$

where g_{1} and g_{2} are bounded functions. Deduce a special case of Dirichlet's theorem on primes in arithmetic progression.

