Number Theory: Example Sheet 1 of 4

1. Calculate $d=(a, b)$ and find integers r and s such that $r a+s b=d$ when
(i) $a=841, b=160$;
(ii) $a=2613, b=2171$.
2. Let a and b be integers with $a>b>1$. Let $\lambda(a, b)$ denote the number of individual applications of the division algorithm required by Euclid's algorithm to compute the greatest common divisor of a and b.
(i) Find a pair of four-digit numbers a and b for which $\lambda(a, b)$ is very small.
(ii) Find a pair of four-digit numbers a and b for which $\lambda(a, b)$ is large.
(iii) Find constants c and d such that $\lambda(a, b) \leqslant c \log b+d$.
3. This question is about Diophantine equations of the form $a x+b y=c$, where a, b and c are fixed positive integers, and we are interested in integer solutions (x, y). Where possible, give an example of such an equation that has
(i) no solutions;
(ii) exactly one solution;
(iii) infinitely many solutions;
and briefly justify your answers.
4. Let x be an integer greater than 1. Use the Fundamental Theorem of Arithmetic to show that

$$
x \leqslant\left(1+\frac{\log x}{\log 2}\right)^{\pi(x)}
$$

Deduce that when $x \geqslant 8$ we have $\pi(x) \geqslant \frac{\log x}{2 \log \log x}$.
5. Let a and n be integers greater than 1. Prove that if $a^{n}-1$ is prime, then $a=2$ and n is prime. Is the converse true?
6. Let q be an odd prime. Prove that every prime factor of $2^{q}-1$ must be congruent to $1 \bmod q$, and also congruent to $\pm 1 \bmod 8$. Use this to factor $2^{11}-1=2047$.
7. We say that a positive integer n is perfect if the sum of all the positive divisors of n is equal to $2 n$. Prove that a positive even integer n is perfect if and only if it can be written in the form $n=2^{q-1}\left(2^{q}-1\right)$, where $2^{q}-1$ is prime.
(It is conjectured that there are no odd perfect numbers, but this is as yet unknown.)
8. By considering numbers of the form $n=\left(2^{2} \cdot 3 \cdot 5 \cdots p\right)-1$, prove that there are infinitely many primes congruent to $3 \bmod 4$.
9. Find the smallest non-negative integer x satisfying the congruences $x \equiv 2(\bmod 3)$, $x \equiv 3(\bmod 5), x \equiv 4(\bmod 11), x \equiv 5(\bmod 16)$.
10. Find all integers x satisfying both $19 x \equiv 103(\bmod 900)$ and $10 x \equiv 511(\bmod 841)$.
11. A positive integer is said to be square-free if it is the product of distinct primes. (So, for example, 174 is square-free but 175 is not.) Are there 100 consecutive numbers that are not square-free?
12. Prove that the classes of both 2 and 3 generate $\left(\mathbb{Z} / 5^{n} \mathbb{Z}\right)^{\times}$for all positive integers n. For each of the primes $p=11,13,17$ and 19 , find a generator of $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$for all $n \geqslant 1$.
13. Let A be the group $(\mathbb{Z} / 65520 \mathbb{Z})^{\times}$. Determine the least positive integer n such that $g^{n}=1$ for all g in A.
14. Let a and n be integers greater than 1 , and put $N=a^{n}-1$. Show that the order of $a+N \mathbb{Z}$ in $(\mathbb{Z} / N \mathbb{Z})^{\times}$is exactly n, and deduce that n divides $\phi(N)$. If n is a prime, deduce that there are infinitely many primes q such that $q \equiv 1(\bmod n)$.

