Number Theory: Example Sheet 3 of 4

Throughout this sheet, ϕ denotes the Euler totient function, μ the Möbius function, Λ the von Mangoldt function, ζ the Riemann zeta function, $\pi(n)$ the number of primes up to $n, \tau(n)$ the number of positive divisors of n, and $\sigma(n)$ the sum of the positive divisors of n.

1. Prove that for $\operatorname{Re}(s)>1$, we have

$$
\zeta(s)^{2}=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}
$$

Can you find Dirichlet series for $1 / \zeta(s)$ and $\zeta(s-1) / \zeta(s)$ (for suitable values of s)?
2. Find all natural numbers n for which $\sigma(n)+\phi(n)=n \tau(n)$.
3. (i) Define the Möbius function μ, and check that it is multiplicative.
(ii) Let f be a function defined on the natural numbers, and define g by $g(n)=$ $\sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)$. Find an expression for f in terms of g.
(iii) Find a relationship between μ and ϕ.
4. Compute $\sum_{d \mid n} \Lambda(d)$ for natural numbers n.
5. Use Legendre's formula to compute $\pi(207)$.

6 . Let N be a positive integer greater than 1 .
(i) Show that the exact power of a prime p dividing N ! is $\sum_{k=1}^{\infty}\left\lfloor\frac{N}{p^{k}}\right\rfloor$.
(ii) Prove the inequality N ! $>\left(\frac{N}{e}\right)^{N}$.
(iii) Deduce that

$$
\sum_{p \leqslant N} \frac{\log p}{p-1}>(\log N)-1
$$

7. Let $\theta(x)=\sum_{p \leqslant x} \log p$ and $\psi(x)=\sum_{n \leqslant x} \Lambda(n)$. Prove that for any $0<\delta<1$ we have

$$
\delta\left(\pi(x)-\pi\left(x^{\delta}\right)\right) \log x \leqslant \theta(x) \leqslant \pi(x) \log x .
$$

By also finding suitable bounds for $\psi(x)$, deduce that $\theta(x) \sim \psi(x) \sim \pi(x) \log x$ as $x \rightarrow \infty$.
8. By considering the binomial coefficient $\binom{2 m+1}{m}$ show that

$$
\prod_{m+2 \leqslant p \leqslant 2 m+1} p \leqslant 4^{m}
$$

Deduce that $\prod_{p \leqslant n} p \leqslant 4^{n}$ for all $n \geqslant 1$.
9. Prove that for every $n \geqslant 1$, the set of numbers $\{1,2, \ldots, 2 n\}$ can be partitioned into pairs $\left\{a_{1}, b_{1}\right\},\left\{a_{2}, b_{2}\right\}, \ldots,\left\{a_{n}, b_{n}\right\}$ so that the sum $a_{i}+b_{i}$ of each pair is prime.
10. Calculate a_{0}, \ldots, a_{4} in the continued fraction expansions of e and π.
11. Let a be a positive integer. Determine explicitly the real number whose continued fraction is $[a, a, a, \ldots]$.
12. Determine the continued fraction expansions of $\sqrt{3}, \sqrt{7}, \sqrt{13}, \sqrt{19}$.
13. Let d be a positive integer that is not a square. Let θ_{n} and p_{n} / q_{n} be the complete quotients and convergents arising in the continued fraction expansion of \sqrt{d}. Show that for all $n \geqslant 1$ we have $p_{n-1}-q_{n-1} \sqrt{d}=(-1)^{n} / \prod_{i=1}^{n} \theta_{i}$.
14. (Optional, for enthusiasts of analysis.) Let χ_{4} be the non-trivial group homomorphism $(\mathbb{Z} / 4 \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$. Show that

$$
L\left(s, \chi_{4}\right)=1-\frac{1}{3^{s}}+\frac{1}{5^{s}}-\frac{1}{7^{s}}+\frac{1}{9^{s}}-\frac{1}{11^{s}}+\ldots
$$

is a continuous function on $(0, \infty)$ with $L\left(1, \chi_{4}\right) \neq 0$. Use the Euler products to show that for $s>1$ we have

$$
\begin{aligned}
\log \zeta(s) & =\sum_{p} \frac{1}{p^{s}}+g_{1}(s) \\
\log L\left(s, \chi_{4}\right) & =\sum_{p \neq 2} \frac{\chi_{4}(p)}{p^{s}}+g_{2}(s)
\end{aligned}
$$

where g_{1} and g_{2} are bounded functions. Deduce a special case of Dirichlet's theorem on primes in arithmetic progression.

