

Number Theory: Example Sheet 3 of 4

Throughout this sheet, ϕ denotes the Euler totient function, μ the Möbius function, $\tau(n)$ the number of positive divisors of n , and $\sigma(n)$ the sum of the positive divisors of n .

1. Prove that for $\operatorname{Re}(s) > 1$, we have

$$\zeta(s)^2 = \sum_{n=1}^{\infty} \frac{\tau(n)}{n^s}.$$

Can you find Dirichlet series for $1/\zeta(s)$ and $\zeta(s-1)/\zeta(s)$ (for suitable values of s)?

2. Find all natural numbers n for which $\sigma(n) + \phi(n) = n\tau(n)$.
3. (i) Define the Möbius function μ , and check that it is multiplicative.
(ii) Let f be a function defined on the natural numbers, and define g by $g(n) = \sum_{d|n} \mu(d)f\left(\frac{n}{d}\right)$. Find an expression for f in terms of g .
(iii) Find a relationship between μ and ϕ .
4. Compute $\sum_{d|n} \Lambda(d)$ for natural numbers n . (Here Λ is the von Mangoldt function.)
5. Use Legendre's formula to compute $\pi(207)$.
6. Let N be a positive integer greater than 1.
 - (i) Show that the exact power of a prime p dividing $N!$ is $\sum_{k=1}^{\infty} \left\lfloor \frac{N}{p^k} \right\rfloor$.
(ii) Prove the inequality $N! > \left(\frac{N}{e}\right)^N$.
(iii) Deduce that
$$\sum_{p \leq N} \frac{\log p}{p-1} > (\log N) - 1.$$
7. Prove that every non-constant polynomial with integer coefficients assumes infinitely many composite values.
8. Prove that every integer $N > 6$ can be expressed as a sum of distinct primes. (One method is to find a strictly increasing sequence of integers (a_k) such that every integer $6 < N \leq a_k$ is a sum of distinct primes less than or equal to the k th prime.)
9. Prove that for every $n \geq 1$, the set of numbers $\{1, 2, \dots, 2n\}$ can be partitioned into pairs $\{a_1, b_1\}, \{a_2, b_2\}, \dots, \{a_n, b_n\}$ so that the sum $a_i + b_i$ of each pair is prime.
10. Calculate a_0, \dots, a_4 in the continued fraction expansions of e and π .
11. Let a be a positive integer. Determine explicitly the real number whose continued fraction is $[a, a, a, \dots]$.

12. Determine the continued fraction expansions of $\sqrt{3}$, $\sqrt{7}$, $\sqrt{13}$, $\sqrt{19}$.

13. Let d be a positive integer that is not a square. Let θ_n and p_n/q_n be the complete quotients and convergents arising in the continued fraction expansion of \sqrt{d} . Show that for all $n \geq 1$ we have $p_{n-1} - q_{n-1}\sqrt{d} = (-1)^n / \prod_{i=1}^n \theta_i$.

14. (Extra question, requires Analysis II.) Let χ_4 be the non-trivial group homomorphism $(\mathbb{Z}/4\mathbb{Z})^\times \rightarrow \{\pm 1\}$. Show that

$$L(s, \chi_4) = 1 - \frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \frac{1}{9^s} - \frac{1}{11^s} + \dots$$

is a continuous function on $(0, \infty)$ with $L(1, \chi_4) \neq 0$. Use the Euler products to show that for $s > 1$ we have

$$\begin{aligned} \log \zeta(s) &= \sum_p \frac{1}{p^s} + g_1(s) \\ \log L(s, \chi_4) &= \sum_{p \neq 2} \frac{\chi_4(p)}{p^s} + g_2(s) \end{aligned}$$

where g_1 and g_2 are bounded functions. Deduce a special case of Dirichlet's theorem on primes in arithmetic progression.