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1 Introduction
Number theory is the branch of mathematics concerned with the study of the mys-
terious and hidden properties of the most basic mathematical objects, namely the
integers

Z = {0,±1,±2, · · · },
and the rational numbers

Q = {m/n : m, n ∈ Z and n 6= 0}.

It is the oldest part of mathematics, having its origins somewhere in Asia long
before Greek mathematics (e.g. triples of integers, which are the side lengths of
right-angled triangles, occur in Babylonian Cuneiform texts dating from 1900-
1600 BC, and in Indian sutras dating from about 800 BC). Since the earliest time
until the present day, it has been an experimental science. Number theorists look
for the appearance of unexpected patterns and laws in numerical data, and then
try to formulate general conjectures. Some of the many unproven conjectures
are very old, including one we shall discuss, which can be traced back to Arab
manuscripts a thousand years ago. The hardest part of number theory is to find
proofs of conjectures, or more usually proofs of partial results in support of these
conjectures. When proofs have been found in the past, they have nearly always
relied on major conceptual advances in seemingly unrelated frontiers of mathe-
matical knowledge. It should also be stressed that there are central parts of num-
ber theory, notably the study of the continued fraction algorithm, where there has
been no important progress since the 18th century. For example, we know essen-
tially nothing about the continued fraction expansion of real algebraic numbers
of degree > 2. Also, even though the trascendence of π was proven by Hermite
and Lindemann in the latter part of the 19th century, its continued fraction expan-
sion remains a mystery. Finally, there is one genuinely new feature of research in
number theory today, namely the ever growing links with the algorithmic side of
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computer science. Indeed, computer science provides almost unlimited possibili-
ties for numerical experimentation by researchers in number theory. On the other
hand, number theory provides the basis of the principal cryptosystems which are
secure against attack by modern computers.

Modern number theory is a vast subject, which overlaps many other areas of
mathematics. In my lecture today, I want to at least touch on four major areas of
number theory. All have aspects which are very old, but they are also important
fields of current research. They are:-
1. Primality testing and factorization.
2. Diophantine equations
3. Distribution of prime numbers
4. Connexions between L-functions and arithmetic.
In conclusion, I wish to thank Sujatha and Carl Pomerance for their help in prepar-
ing this lecture.

2 Primality testing and Factorization
We only consider positive integers in this section. By a factorization of a positive
integer N , we mean an expression

N = MR (1)

where M and R are also integers (we then say that M and R are divisors of N ).
We say N is a prime if N has no non-trivial factorization i.e. 1 and N are the only
divisors of N . The series of primes begins with

2, 3, 5, 7, 11, 13, 17, 19, 23, · · · ,

and it is easy to see that there are infinitely many primes (Euclid wrote down the
first formal proof of this). The largest explicitly known prime at present is

232582657 − 1,

which has over 9.8 million decimal digits.
By successively refining (1), it is clear that every N has a factorization

N = p1 . . . pt, (2)

where the pi are not necessarily distinct primes. The fundamental theorem of
arithmetic (which curiously is not stated explicitly in Euclid), asserts that (2) is
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unique up to the order of factors. From a naive viewpoint, the theory of factoriza-
tion in Z is complete once we have this theorem. Moreover, there is an obvious
algorithm (namely trial division by 2, then by all odd integers ≤

√
N ) which

either produces a factorization of N or tells us that N is prime.
However, the theory does not end here, because in our age of high speed com-

puters, most systems of cryptography are devised around the fact that it is fast to
multiply two large integers, but slow to factor a large integer. We do not attempt
to make this completely precise, but the essential point is clear. One sees easily
that the number of “elementary operations” (by such an elementary operation, we
mean the addition or multiplication of two digits from the set 0, · · · , 9, with the
remainder being carried, if necessary) to multiply two large positive integers M
and R is at most 2mr, where m (respectively r) = number of digits of M (resp. of
R). But m− 1 ≤ log10 M and r− 1 ≤ log10 R. Hence, assuming R ≤ M , we see
that multiplication takes at most

2(log10 M + 1)2

elementary operations. In general, a number theoretic algorithm is said to be
polynomial, if when it is applied to one or several integers ≤ M , it takes at most

c(log M)w

elementary operations to complete the algorithm, where c and w are positive con-
stants not depending on M . Clearly trial division by 2 and all odd integers ≤

√
N

does not provide a polynomial algorithm for factoring N . This immediately sug-
gests the following:-
Fundamental Problem 1. Is there a polynomial algorithm for factoring?

Many better algorithms than trial division have been developed by number
theorists, starting with Fermat and especially over the last forty years (see the
excellent book [4] by R. Crandall and C. Pomerance). But the answer to the
above problem still seems far away, and could be positive or negative.

Primality testing algorithms are those which test whether or not N is prime
(but do not necessarily produce a factorization of N if N is composite). Here
much more is known, culminating in the important recent result:-

Theorem 2.1 (Agarwal, Kayal, Saxena)[1]. There exists a polynomial algorithm
for primality testing.

The proof of the above theorem, and a beautiful earlier conditional result, all rely
on congruence techniques. Let m be a positive integer. We say two integers a
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and b are congruent modulo m, written a ≡ b mod m, if m divides a − b. It is
very fast to carry out multiplication and addition modulo m. Moreover, unlike
exponentiation in Z itself, exponentiation modulo m can easily be shown to be
a polynomial algorithm. The following remarkable, but conditional, polynomial
primality testing algorithm using congruences modulo N is due to Miller and
Rabin. We can suppose N is odd, and write

N − 1 = 2st (s ≥ 1, t odd).

Let w be any integer in {2, · · · , N − 1}. We say w is a witness for N if at least
one of the following congruences does not hold:-

wt ≡ 1 mod N

w2it ≡ −1 mod N for some i with 0 ≤ i ≤ s − 1.

It is easy to see that N is composite if and only if there exists a witness for N in
the set {2, · · · , N − 1}. If N is composite, let W (N) denote the smallest witness
for N in this set. What is deep and remarkable is the following theorem.

Theorem 2.2 (Ankeny, Bach)[2]. Assume the Riemann hypothesis for all Dirich-
let L-functions. Then, for all odd composite N , we have

W (N) < 2 log2 N.

Here the Dirichlet L-functions, which are functions of a complex variable s, enter
mysteriously into the study of this elementary arithmetic problem. We shall see
this phenomenon occurring for other basic problems.

3 Diophantine equations
Diophantine equations refer to the study of the solutions of polynomial equations
in two or more variables in either integers or rational numbers, rather than in real
or complex numbers. A beautiful example of the subject, which we now briefly
describe, turns out to be the oldest unsolved major problem in number theory, and
possibly in the whole of mathematics.

A positive integer D is defined to be a congruent number if it is the area of a
right angled triangle, all of whose sides have lengths in Q (the problem is non-
trivial only because we insist that all three sides have rational lengths). For exam-
ple, 5, 6, and 7 are all congruent numbers, because of the existence of the right
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with (a, b, c) given respectively by (40/6, 9/6, 41/6), (3, 4, 5), and (288/60, 175/60, 337/60).
Note that, because of similarity considerations, we need only consider square free
positive integers in determining whether a number is congruent or not. The tenth
century Arab manuscript of al-Kazin in the Bibliothéque Nationale de Paris has
tables showing that
5, 6, 14, 15, 21, 30, 34, 65, 70, 110, 154, 190, 210, 221, 231, 286, 330, 390, 429,
546, 1155, 1254, 1785, 1995, 2730, 3570, 4290, 5610, 7854, 10374
are all congruent. The first known European manuscript related to congruent num-
bers is Fibonacci’s book Liber Quadratorum published in 1225, in which he points
out that both 5 and 7 are congruent, and claims without proper justification that 1
is not. Of course, today vast tables of congruent numbers exist, and what remains
of great interest are the theoretical problems.
Fundamental Problem 2. Prove the existence of an algorithm which decides in
a finite number of steps whether or not a given positive integer is congruent.
In fact, a simple algorithm is conjectured, coming from the mysterious connexion
of this purely arithmetic problem with L-functions (cf. the last part of this lec-
ture). But it seems very difficult to prove this algorithm at present. Perhaps even
more surprising from a naive point of view, but again simply explained via the
conjectural connexion with L-functions, is:-
Fundamental Problem 3. Prove that every positive integer which is of the form
8n + 5, 8n + 6, or 8n + 7 is congruent.
These problems are linked with diophantine equations, thanks to the following
elementary lemma:-

Lemma 3.1 . Let D be an integer ≥ 1. Then D is congruent if and only if there
exists a point (x, y), with x, y in Q and y 6= 0 on the elliptic curve

ED : y2 = x3 − D2x. (3)
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We owe to Fermat, in the middle of the 17th century, a marvellous proof that 1 is
not congruent. Not only did this proof introduce ideas that had a vast development
in the 20th century, but Fermat noted that his proof also showed that there are no
integers x, y, z with xyz 6= 0 such that

x4 + y4 = z4.

He subsequently went on to state, without proof, that there are no integers x, y, z
with xyz 6= 0 such that

xn + yn = zn (4)
when n is any integer ≥ 3.

Two major successes of recent research in number theory have been on dio-
phantine equations.

Theorem 3.2 (A. Wiles)[9]. There are no solutions in integers x, y, z with xyz 6=
0 of (4) when n ≥ 3.

Theorem 3.3 (P. Mihailescu)[7][8]. The only solution of the equation

xm − yn = 1,

in positive integers x, y, m, n, with m, n ≥ 2 is

x = 3, y = 2, m = 2, n = 3.

Both proofs make heavy use of ideas which have their origins in the great Ger-
man school of number theory of the 19th century. In particular, Wiles’ work used
the theory of modular functions and forms which began with this school. Mi-
hailescu’s proof is based on Kummer’s beautiful ideas about the arithmetic of cy-
clotomic fields, which Kummer had developed to study, with only limited success,
the Fermat equation (4).

4 Distribution of prime numbers
If x is a real number ≥ 2, we define

π(x) = number of primes p with p ≤ x.

Thanks to the help of high speed computers, we know today the value of π(x) for
x ≤ 1021. In the late 18th century, Gauss, by examining tables of prime numbers,
conjectured that a good approximation to π(x) should be given by the function

li(x) =

∫ x

2

dt/ log t.
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All subsequent numerical work has shown what an extraordinarily good approxi-
mate estimate this is! Numerically π(x) < li(x) for all x ≤ 1021, but Littlewood
proved that the function π(x) − li(x) changes sign infinitely often.

In the second half of the 19th century, Hadamard and de la Vallée Poussin
proved the celebrated prime number theorem asserting that

lim
x→∞

π(x)/li(x) = 1.

They studied the Riemann zeta function, which is the analytic continuation of the
series

ζ(s) =

∞
∑

n=0

1/ns (Re(s) > 1),

and proved that ζ(s) has no zero on the line Re(s) = 1. Their work was heavily
influenced by Riemann’s great memoir of 1859. In this memoir, Riemann made
the celebrated conjecture:-
Fundamental Problem 4 (Riemann Hypothesis). All zeroes of ζ(s) in the half
plane Re(s) > 0 lie on the line Re(s) = 1/2.

Thanks to a blend of theory and modern computing power, it is now known that
the first 1013 zeroes of ζ(s) in Re(s) > 0 satisfy Re(s) = 1/2. Morevover, it is
known that the Riemann Hypothesis is equivalent to the assertion that

| π(x) − li(x) |≤ x1/2 log x (x ≥ 3).

Despite intensive efforts by many mathematicians, a proof of the Riemann Hy-
pothesis seems as far away as ever today.

Numerical examples of finite arithmetic progressions of primes have long been
noticed, for example

7, 37, 67, 97, 127, 157.

However, it was only very recently that the following striking theoretical result
was established.

Theorem 4.1 (Green and Tao)[6]. There exist arbitrarily long arithmetic pro-
gressions of prime numbers.

Many other old conjectures about primes still resist theoretical attack, even
though the numerical and theoretical evidence in support of them seems over-
whelming. For example, it is unknown whether there are infinitely many prime
pairs (p, p + 2), or whether there are infinitely many primes of the form n2 + 1.
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5 Connection between L-functions and arithmetic
We have already seen deep unproven assertions about primality testing, congruent
numbers, and the difference π(x) − li(x), which are implied by unproven asser-
tions about L-functions. If the L-functions were not there, we would still have
noticed the same phenomena from numerical data, but there would be no theoret-
ical reason why we would expect them to be always true. The simplest proven
example of this mysterious phenomenon was discovered by Dirichlet in 1837, as
an unexpected by-product of his proof of the theorem:-

Theorem 5.1 (Dirichlet). Let a, b be relatively prime positive integers. Then
there are infinitely many primes of the form an + b, (n = 1, 2, · · · ).

Here is a curious consequence of his beautiful proof. Let p be any odd prime,
and consider the set

P = {1, · · · , p − 1}.
If w is any element of P , we say that w is a quadratic residue mod p if there
exists an integer x such that x2 ≡ w mod p; if no such x exists, we say that w is a
quadratic non-residue mod p. For example, if p = 19, the quadratic residues mod
19 are given by

1, 4, 5, 6, 7, 9, 11, 16, 17.

In general, it is easy to see that P always as exactly (p − 1)/2 quadratic residues
and (p − 1)/2 quadratic non-residues. As p varies, we would expect the residues
and non-residues to be distributed at random in the set P . But Dirichlet noticed
that his work on L-functions proved that this is not the case for the primes p with
p ≡ 3 mod 4. Let P be the subset of P given by

P = {1, · · · , (p − 1)/2}.

Theorem 5.2 (Dirichlet). For every prime p with p ≡ 3 mod 4, the set P con-
tains more quadratic residues than non-residues mod p.

No proof of this simple statement, which does not use L-functions, has ever been
found!

To prove these results, Dirichlet introduced a generalisation of the Riemann-
zeta function, which we call the Dirichlet L-function. Here is one of the key
examples of such an L-function. Let p be an odd prime number. We define

(

n
p

)

for n ∈ Z to be zero if p divides n, +1 if (n, p) = 1 and n is a quadratic residue
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mod p, and −1 if (n, p) = 1 and n is a quadratic non-residue mod p. Dirichlet
then defined the L-function

L(s,

(

.

p

)

) =
∞

∑

n=1

(

n

p

)

/ns (Re(s) > 1).

Unlike the Riemann-zeta function, this function does not have a pole at s = 1. In
fact, Dirichlet found a beautiful closed formula for its value at s = 1, from which
the above result follows easily. But in all other ways, this L-function seems to
behave like ζ(s). It has an analytic continuation to the whole complex plane. The
generalised Riemann hypothesis asserts that all of its zeroes in Re(s) > 0 should
lie on the line Re(s) = 1/2. Needless to say, a proof of this assertion seems as
distant as the classical Riemann hypothesis.

In the 20th century, it was realised that it was important to generalize the
notion of zeta and L-functions to a very wide class of arithmetic objects, including
the elliptic curve

ED : y2 = x3 − D2x,

which occurred earlier in our discussion of the congruent number problem. The
key to defining these new L-functions is via Euler products, so named because
Euler in the 18th century proved the identity

ζ(s) =
∏

q

(1 − q−s)−1 (Re(s) > 1),

where the product is taken over all prime numbers q. We sketch the definition
of the L-function in the special case of ED, but in fact it can be made in vastly
greater generality. Assume that D is square-free. Let q be a prime number which
does not divide 2D. Let Nq denote the numbers of pairs (x, y) where x and y run
over the integers modulo q, which satisfy the congruence

y2 ≡ x3 − D2x mod q.

Put
aq = q − Nq.

We then define the L-function of ED by the Euler product

L(ED, s) =
∏

(q,2D)=1

(1 − aqq
−s + q1−2s)−1

where the product is taken over all primes q which do not divide 2D. The Euler
product only converges over the half plane Re(s) > 3/2, but it can be analytically
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continued over the whole complex plane, a result which in this case is essentially
due to Eisenstein and Kronecker. For this function, it is the vertical line Re(s) = 1
which plays the analogue of the line Re(s) = 1/2 for the Riemann zeta function
and the Dirichlet L-functions. Of course, we believe that every zero of L(ED, s)
in Re(s) > 0 should lie on the line Re(s) = 1. But a totally new phenomena can
occur here, as was discovered about 1960 by Birch and Swinnerton-Dyer [3]. The
following is a very special case of their celebrated conjecture.
Fundamental Problem 5. Prove that there exists a point (x, y) on ED with x, y ∈
Q and y 6= 0 if and only if L(ED, s) vanishes at s = 1.
One direction of this problem (the existence of a point implies the existence of a
zero) was proven by Wiles and myself [5]. The proof in the other direction still
seems far away. The difficulty is that if L(ED, s) vanishes at s = 1, then a p∞-
descent on the curve shows that, for every prime p, there appears cohomologically
to be a rational point (x, y) with 6= 0. But no way is known at present to conclude
that there does indeed exist an actual rational point giving rise to these possibly
phantom cohomological points.

We end this lecture by indicating why a proof of the above conjecture would
yield an answer to Fundamental Problems 2 and 3 discussed earlier. Firstly,
the classical functional equation relating L(ED, s) and L(ED, 2 − s) shows that
L(ED, s) has a zero of odd (resp. even) multiplicity at s = 1 when D ≡ 5, 6, 7 mod 8
(resp. when D ≡ 1, 2, 3 mod 8). This explains, in particular,the mysterious asser-
tion given by Fundamental Problem 3, and we stress that there is no explanation
of this assertion which does not rely on its connexion with L-functions. When
D ≡ 1, 2, 3 mod 8, one has to use a closed formula for the value L(ED, 1) to
decide whether or not it is zero, and fortunately at least two such closed formulae
are known. We briefly explain one of these formulae, which is due to Tunnell
[10]. Consider the formal power series in T given by

g(T ) = T
∞
∏

n=1

(1 − T 8n)(1 − T 16n), θk(T ) = 1 + 2
∞

∑

n=1

T 2kn2

(k = 1, 2).

By multiplying these two formal power series, we can define two sequences of
integers a(n), b(n) (n ≥ 1) by the expansions

g(T )θ1(T ) =

∞
∑

n=1

a(n)T n, g(T )θ2(T ) =

∞
∑

n=1

b(n)T n.

Then it is proven in [10] that, for each odd positive square free integer N , we have

L(EN , 1) = u(N)a(N)2, L(E2N , 1) = v(N)b(N)2,
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where u(N) and v(N) are certain explicit complex numbers which are both clearly
non-zero. Thus this L-value vanishes if and only if the corresponding integer
a(N) or b(N) vanishes. Since there is plainly a simple finite algorithm for com-
puting a(N) and b(N), we have our desired algorithm for testing whether a square
free positive integer is a congruent number or not. For example, b(17) = 0, show-
ing that L(E34, 1) = 0. In fact, D = 34 is the smallest congruent number satisfy-
ing D ≡ 1, 2, 3 mod 8.
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