1. Let $K=\mathbf{Q}(\sqrt{26})$ and let $\varepsilon=5+\sqrt{26}$. Use Dedekind's theorem to show that the ideal equations

$$
\langle 2\rangle=\langle 2, \varepsilon+1\rangle^{2}, \quad\langle 5\rangle=\langle 5, \varepsilon+1\rangle\langle 5, \varepsilon-1\rangle, \quad\langle\varepsilon+1\rangle=\langle 2, \varepsilon+1\rangle\langle 5, \varepsilon+1\rangle
$$

hold in K. Using Minkowski's bound, show that the class number of K (i.e. the cardinality of the ideal class group $\left.\mathrm{Cl}\left(\mathcal{O}_{K}\right)\right)$ is 2 . Verify that ε is the fundamental unit. Deduce that all solutions in integers x, y to the equation $x^{2}-26 y^{2}= \pm 10$ are given by $x+\sqrt{26} y= \pm \varepsilon^{n}(\varepsilon \pm 1)$ for $n \in \mathbf{Z}$.
2. Find the factorisations into prime ideals of $\langle 2\rangle$ and $\langle 3\rangle$ in $K=\mathbf{Q}(\sqrt{-23})$. Verify that $\langle\omega\rangle=\langle 2, \omega\rangle\langle 3, \omega\rangle$ where $\omega=\frac{1}{2}(1+\sqrt{-23})$. Prove that K has class number 3.
3. Find the factorisations into prime ideals of $\langle 2\rangle,\langle 3\rangle$ and $\langle 5\rangle$ in $K=\mathbf{Q}(\sqrt{-71})$. Verify that

$$
\langle\alpha\rangle=\langle 2, \alpha\rangle\langle 3, \alpha\rangle^{2} \quad \text { and } \quad\langle\alpha+2\rangle=\langle 2, \alpha\rangle^{3}\langle 3, \alpha-1\rangle
$$

where $\alpha=\frac{1}{2}(1+\sqrt{-71})$. Find an element of \mathcal{O}_{K} with norm $2^{a} \cdot 3^{b} \cdot 5$ for some $a, b \geq 0$. Hence prove that the class group of K is cyclic and find its order.
4. Compute the ideal class group of $\mathbf{Q}(\sqrt{d})$ for $d=-30,-13,-10,19$ and 65.
5. (1) Find the fundamental unit in $\mathbf{Q}(\sqrt{3})$. Determine all the integer solutions of the equations $x^{2}-3 y^{2}=m$ for $m=-1,13$ and 121 .
(2) Find the fundamental unit in $\mathbf{Q}(\sqrt{10})$. Determine all the integer solutions of the equations $x^{2}-10 y^{2}=m$ for $m=-1,6$ and 7 .
6. Find all integer solutions of the equations $y^{2}=x^{3}-13$ and $y^{2}=x^{5}-10$.
7. Show that $\mathbf{Q}(\sqrt{-d})$ has class number 1 for $d=1,2,3,7,11,19,43,67,163$.
8. Let $K=\mathbf{Q}(\sqrt{-d})$ where $d>3$ is a square-free integer.
(1) Show that if \mathcal{O}_{K} is Euclidean, then it contains a principal ideal of norm 2 or 3. [Hint: Suppose that $\phi: \mathcal{O}_{K}-\{0\} \rightarrow \mathbf{N}$ is a Euclidean function. Then choose $x \in \mathcal{O}_{K}-\{0, \pm 1\}$ with $\phi(x)$ minimal.]
(2) Use your answer to Question 7 to give an example where \mathcal{O}_{K} is a PID, but is not Euclidean.
9. Let $K=\mathbf{Q}(\alpha)$ where α is a root of $f(X)=X^{3}-7 X-1$. [Note that $\operatorname{disc}(f)=$ 5×269 is square-free.] Compute $\mathrm{N}_{K / \mathbf{Q}}(n+\alpha)$ for $|n| \leq 3$. Hence show that $\langle 5\rangle=P_{1}^{2} P_{2}$ and $\langle 7\rangle=Q_{1} Q_{2} Q_{3}$ where the P_{i} and Q_{j} are distinct principal prime ideals of \mathcal{O}_{K}. Find units generating a subgroup of \mathcal{O}_{K}^{\times}of finite index. [Hint: You can show that the units you have found are independent by considering their images in $\mathcal{O}_{K} / 7 \mathcal{O}_{K} \cong \mathbf{F}_{7} \times \mathbf{F}_{7} \times \mathbf{F}_{7}$.]
10. Let $K=\mathbf{Q}(\sqrt{d})$ where $d \neq 0,1$ is a square-free integer. Describe the ring $\mathcal{O}_{K} / 2 \mathcal{O}_{K}$ as explicitly as you can. [The answer depends on d mod 8.] Show that $\mathbf{Z}[\sqrt{d}]^{\times} \subset \mathcal{O}_{K}^{\times}$has index 1 or 3 . Give an example where the index is 3 .
11. Let p be an odd prime and let $\zeta_{p}=e^{2 \pi i / p}$.
(1) Show that $\mathbf{Q}\left(\zeta_{p}\right)$ contains a quadratic field with discriminant $\pm p$. How does the sign depend on p ?
(2) Show using the Minkowski bound that $\mathbf{Z}\left[\zeta_{p}\right]$ is a UFD for $p=5$ and $p=7$.
12. Let $K=\mathbf{Q}(\alpha)$ where α is a root of $f(X)=X^{3}-3 X+1$.
(1) Show that f is irreducible over \mathbf{Q} and compute its discriminant.
(2) Show that $3 \mathcal{O}_{K}=P^{3}$ where $P=\langle\alpha+1\rangle$ is a prime ideal in \mathcal{O}_{K} with residue field \mathbf{F}_{3}. Deduce that $\mathcal{O}_{K}=\mathbf{Z}[\alpha]+3 \mathcal{O}_{K}$.
(3) Show that $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$. Compute the class group of K.
13. Let $K=\mathbf{Q}\left(e^{2 \pi i / 23}\right)$.
(1) Show that there are distinct prime ideals Q, Q^{\prime} of \mathcal{O}_{K} such that $\langle 2\rangle=Q Q^{\prime}$ and $\mathrm{N}(Q)=\mathrm{N}\left(Q^{\prime}\right)=2^{11}$. [You may use the fact from Part II Galois Theory that any finite field of order p^{n} contains a unique subfield of order p^{d} for each $d \mid n$.]
(2) Using your answer to Question 2, deduce that the class number of K is divisible by 3 .
14. Let $B_{r, s}(t)=\left\{\left(y_{1}, \ldots, y_{r}, z_{1}, \ldots, z_{s}\right) \in \mathbf{R}^{r} \times \mathbf{C}^{s}\left|\sum\right| y_{i}\left|+2 \sum\right| z_{j} \mid \leq t\right\}$. Show that $\operatorname{vol} B_{r+1, s}(t)=\int_{-t}^{t} \operatorname{vol} B_{r, s}(t-|y|) d y$, and $\operatorname{vol} B_{r, s+1}(t)=\iint_{|z| \leq t / 2} \operatorname{vol} B_{r, s}(t-$ $2|z|)$.

Hence show by induction that $\operatorname{vol} B_{r, s}(t)=2^{r}\left(\frac{\pi}{2}\right)^{s} \frac{t^{n}}{n!}$. [You should do the second integral by choosing polar coordinates, $z=r e^{i \theta}$.]

