1. (1) Explain why the equations

$$
2 \cdot 11=(5+\sqrt{3})(5-\sqrt{3})
$$

and

$$
(2+\sqrt{7})(3-2 \sqrt{7})=(5-2 \sqrt{7})(18+7 \sqrt{7})
$$

are not inconsistent with the fact $\mathbf{Z}[\sqrt{3}]$ and $\mathbf{Z}[\sqrt{7}]$ have unique factorisation.
(2) Find equations to show that $\mathbf{Z}[\sqrt{d}]$ is not a UFD for $d=-10,-13,-14$.
2. Let K be a number field, and let $I, J \subset \mathcal{O}_{K}$ be non-zero ideals.
(1) Determine the factorisations into prime ideals of $I+J$ and $I \cap J$ in terms of those for I and J. Show that if $I+J=\mathcal{O}_{K}$ then $I \cap J=I J$ and there is an isomorphism of rings $\mathcal{O}_{K} / I J \cong \mathcal{O}_{K} / I \times \mathcal{O}_{K} / J$.
(2) Show that I can be generated by at most 2 elements.
(3) Let $\phi(I)=\left|\left(\mathcal{O}_{K} / I\right)^{\times}\right|$. Show that

$$
\phi(I)=\mathrm{N}(I) \prod_{P \backslash I}\left(1-\frac{1}{\mathrm{~N}(P)}\right)
$$

where the product is over the set of prime ideals P dividing I.
3. Let K be a number field, and let $I=\left\langle x_{1}, x_{2}, \ldots, x_{k}\right\rangle$ be the ideal of \mathcal{O}_{K} generated by x_{1}, \ldots, x_{k}. Show that $\mathrm{N}(I)$ divides $\operatorname{gcd}\left(\mathrm{N}\left(x_{1}\right), \ldots, \mathrm{N}\left(x_{k}\right)\right)$. Do we always have $\mathrm{N}(I)=\operatorname{gcd}\left(\mathrm{N}\left(x_{1}\right), \ldots, \mathrm{N}\left(x_{k}\right)\right)$?
4. Let $K=\mathbf{Q}(\sqrt{-5})$. Show by computing norms, or otherwise, that $P=\langle 2,1+$ $\sqrt{-5}\rangle, Q_{1}=\langle 7,3+\sqrt{-5}\rangle$ and $Q_{2}=\langle 7,3-\sqrt{-5}\rangle$ are prime ideals in \mathcal{O}_{K}. Which (if any) of the ideals $P, Q_{1}, Q_{2}, P^{2}, P Q_{1}, P Q_{2}$ and $Q_{1} Q_{2}$ are principal? Factor the principal ideal $\langle 9+11 \sqrt{-5}\rangle$ as a product of prime ideals.
5. Let K be a number field, and let $I \subset \mathcal{O}_{K}$ be a non-zero ideal. Let m be the least positive integer in I. Prove that m and $\mathrm{N}(I)$ have the same prime factors.
6. Let $K=\mathbf{Q}(\sqrt{35})$ and $\omega=5+\sqrt{35}$. Verify the ideal equations $\langle 2\rangle=\langle 2, \omega\rangle^{2}$, $\langle 5\rangle=\langle 5, \omega\rangle^{2}$ and $\langle\omega\rangle=\langle 2, \omega\rangle\langle 5, \omega\rangle$. Show that the ideal class group of K contains an element of order 2. Find all ideals of norm dividing 100 and determine which are principal.
7. Let $K=\mathbf{Q}(\sqrt{-m})$ where $m>1$ is a square-free integer. Establish the following facts about the factorisation of principal ideals in \mathcal{O}_{K} :
(1) If m is composite and p is an odd prime divisor of m then $\langle p\rangle=P^{2}$ where P is not principal.
(2) If $m \equiv 1$ or $2(\bmod 4)$ then $\langle 2\rangle=P^{2}$ where P is not principal unless $m=1$ or 2 .
(3) If $m \equiv 7(\bmod 8)$ then $\langle 2\rangle=P P^{\prime}$ where $P \neq P^{\prime}$ and P, P^{\prime} are not principal unless $m=7$.
Deduce that if the ideal class group of K is trivial then either $m=1,2$ or 7 , or m is prime and $m \equiv 3(\bmod 8)$.
8. Let $K=\mathbf{Q}(\sqrt{-m})$ where $m>1$ is the product of distinct primes p_{1}, \ldots, p_{k}. Show that $\left\langle p_{i}\right\rangle=P_{i}^{2}$ where $P_{i}=\left\langle p_{i}, \sqrt{-m}\right\rangle$. Show that just two of the ideals $\prod P_{i}^{r_{i}}$ with $r_{i} \in\{0,1\}$ are principal. Deduce that the class group $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ contains a subgroup isomorphic to $(\mathbf{Z} / 2 \mathbf{Z})^{k-1}$.
9. Let $K=\mathbf{Q}(\theta)$ where θ is a root of $X^{3}-4 X+7$. Determine the ring of integers and discriminant of K. Determine the factorisation into prime ideals of $p \mathcal{O}_{K}$ for $p=2,3,5,7,11$. Find all non-zero ideals I of \mathcal{O}_{K} with $\mathrm{N}(I) \leq 11$.
10. Let $K=\mathbf{Q}(\alpha)$ where α is a root of $f(X)=X^{3}+X^{2}-2 X+8$. [This polynomial is irreducible over \mathbf{Q} and has discriminant -4×503.]
(1) Show that $\beta=4 / \alpha \in \mathcal{O}_{K}$ and $\beta \notin \mathbf{Z}[\alpha]$. Deduce that $\mathcal{O}_{K}=\mathbf{Z}[\alpha, \beta]$.
(2) Show that there is an isomorphism of rings $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong \mathbf{F}_{2} \times \mathbf{F}_{2} \times \mathbf{F}_{2}$. Deduce that 2 splits completely in K.
(3) Use Dedekind's criterion to show that $\mathcal{O}_{K} \neq \mathbf{Z}[\theta]$ for any θ.
11. Let $f(X) \in \mathbf{Z}[X]$ be a monic, irreducible polynomial, and let $K=\mathbf{Q}(\theta)$, where θ is a root of $f(X)$.
(1) Show that if p is a prime and $r \in \mathbf{Z}$ is such that $p \nmid \operatorname{disc} f$ and $f(r) \equiv 0$ $(\bmod p)$, then there is a ring homomorphism $\mathcal{O}_{K} \rightarrow \mathbf{F}_{p}$ which sends θ to r $(\bmod p)$.
(2) Suppose that $f(X)=X^{3}-X-1$. Show that θ is not a square in K.
(3) Suppose instead that $f(X)=X^{5}+2 X-2$. Show that the equation $x^{4}+y^{4}+z^{4}=\theta$ has no solutions with $x, y, z \in \mathcal{O}_{K}$.
12. Let $(p)=P_{1}^{e_{i}} \cdots P_{r}^{e_{r}}$ with $\mathrm{N}\left(P_{i}\right)=p^{f_{i}}$.
(1) Let $\alpha \in I=P_{1} \cdots P_{r}$. Show that $\operatorname{Tr}_{K \mid \mathbf{Q}}(\alpha) \equiv 0(\bmod p)$.
(2) Let $\left(\theta_{i}\right)$ be an integral basis for K, and $\left(\alpha_{i}\right)$ a basis for I. By considering the matrix $\operatorname{Tr}_{K \mid \mathbf{Q}}\left(\alpha_{i} \omega_{j}\right)$, show that d_{K} is divisible by $\prod p^{\left(e_{i}-1\right) f_{i}}$.

