1. Find the minimal polynomials over \mathbf{Q} of

$$
(1+i) \sqrt{3}, \quad i+\sqrt{3}, \quad 2 \cos (2 \pi / 7)
$$

2. Which of the following are algebraic integers?
$\sqrt{5} / \sqrt{2}, \quad(1+\sqrt{3}) / 2, \quad(\sqrt{3}+\sqrt{7}) / 2, \frac{3+2 \sqrt{6}}{1-\sqrt{6}},(1+\sqrt[3]{10}+\sqrt[3]{100}) / 3,2 \cos (2 \pi / 19)$.
3. Let f be a monic polynomial with algebraic integer coefficients. Prove that the roots of f are algebraic integers.
4. Let K be a number field. Show that every extension $L \mid K$ of degree 2 is of the form $L=K(\sqrt{\alpha})$ with $\alpha \in K^{\times}, \alpha \notin\left(K^{\times}\right)^{2}$. Show further that there is a isomorphism $K(\sqrt{\alpha}) \cong K(\sqrt{\beta})$ inducing the identity on K if and only if $\alpha / \beta \in$ $\left(K^{\times}\right)^{2}$.
5. Let $m \neq 0,1 \in \mathbf{Z}$ be square-free, and let $K=\mathbf{Q}(\sqrt{m})$. Prove that

$$
\mathcal{O}_{K}= \begin{cases}\left\{a+b \cdot \frac{1+\sqrt{m}}{2}: a, b \in \mathbf{Z}\right\} & \text { if } m \equiv 1 \quad \bmod 4 \\ \{a+b \sqrt{m}: a, b \in \mathbf{Z}\} & \text { otherwise }\end{cases}
$$

6. Let $K=\mathbf{Q}(\theta)$ where θ is a root of $X^{3}-2 X+6$. Show that $[K: \mathbf{Q}]=3$ and compute $N_{K \mid \mathbf{Q}}(\alpha)$ and $\operatorname{Tr}_{K \mid \mathbf{Q}}(\alpha)$ for $\alpha=n-\theta, n \in \mathbf{Z}$ and $\alpha=1-\theta^{2}, 1-\theta^{3}$.
7. Let $d \in \mathbf{Z}_{\geq 1}$ and $\alpha_{1}, \ldots, \alpha_{d} \in \mathbf{C}$. Prove that

$$
\operatorname{det}\left(\alpha_{i}^{j-1}\right)=\prod_{1 \leq i<j \leq d}\left(\alpha_{j}-\alpha_{i}\right)
$$

with both i and j in the determinant running through $1, \ldots, d$.
Let K be a number field of degree d, and let $\alpha \in K$. Conclude that

$$
\operatorname{disc}\left(1, \alpha, \ldots, \alpha^{d-1}\right)=\prod_{1 \leq i<j \leq d}\left(\sigma_{i}(\alpha)-\sigma_{j}(\alpha)\right)^{2}
$$

If $K=\mathbf{Q}(\alpha)$, and f is the minimal polynomial of α, then conclude

$$
\operatorname{disc}\left(1, \alpha, \ldots, \alpha^{d-1}\right)=(-1)^{d(d-1) / 2} \mathbf{N}_{K \mid \mathbf{Q}}\left(f^{\prime}(\alpha)\right)
$$

8. Let $K=\mathbf{Q}(\delta)$ where $\delta=\sqrt[3]{m}$ and $m \neq 0, \pm 1$ is a square-free integer. Show that $\operatorname{disc}\left(1, \delta, \delta^{2}\right)=-27 m^{2}$. By calculating the traces of $\theta, \delta \theta, \delta^{2} \theta$, and the norm of θ, where $\theta=u+v \delta+w \delta^{2}$ with $u, v, w \in \mathbf{Q}$, show that the ring of integers \mathcal{O}_{K} of K satisfies

$$
\mathbf{Z}[\delta] \subset \mathcal{O}_{K} \subset \frac{1}{3} \mathbf{Z}[\delta] .
$$

9. Let $d \in \mathbf{Z}_{\geq 2}$, let $f(X)=X^{d}+a X+b$ with $a, b \in \mathbf{Q}$, and let $\theta \in \mathbf{C}$ be a root of f. Write down the matrix representing multiplication by $f^{\prime}(\theta)$ with respect to the basis $1, \theta, \ldots, \theta^{d-1}$ for K. Hence show that

$$
\operatorname{disc}\left(1, \theta, \ldots, \theta^{d-1}\right)=(-1)^{\binom{d}{2}}\left((1-d)^{d-1} a^{d}+d^{d} b^{d-1}\right) .
$$

10. Compute an integral basis for \mathcal{O}_{K} in the cases $K=\mathbf{Q}[X] /\left(X^{3}+X+1\right)$ and $K=\mathbf{Q}[X] /\left(X^{3}-X-4\right)$.
11. Let $K=\mathbf{Q}(i, \sqrt{2})$. By computing the relative traces $\operatorname{Tr}_{K \mid k}(\theta)$ where k runs through the three quadratic subfields of K, show that the algebraic integers θ in K have the form $\frac{1}{2}(\alpha+\beta \sqrt{2})$, where $\alpha=a+i b$ and $\beta=c+i d$ are Gaussian integers. By considering $N_{K \mid k}(\theta)$ where $k=\mathbf{Q}(i)$ show that

$$
\begin{aligned}
a^{2}-b^{2}-2 c^{2}+2 d^{2} & \equiv 0 \quad(\bmod 4), \\
a b-2 c d & \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

Hence prove that an integral basis for \mathcal{O}_{K} is $1, i, \sqrt{2}, \frac{1}{2}(1+i) \sqrt{2}$, and calculate the discriminant of K.
12. Let K be a quadratic field and $I \subset \mathcal{O}_{K}$ an ideal. Show that $I=(\alpha, \beta)$ for some $\alpha \in \mathbf{Z}$ and $\beta \in \mathcal{O}_{K}$. Let $c=\operatorname{gcd}\left(\alpha^{2}, \alpha \operatorname{Tr}_{K \mid \mathbf{Q}} \beta, N_{K \mid \mathbf{Q}} \beta\right)$. By computing the norm and trace show that $\frac{\alpha \beta}{c} \in \mathcal{O}_{K}$. Deduce that $(\alpha, \beta)\left(\alpha, \beta^{\prime}\right)$ is principal, where $\beta \beta^{\prime}=N_{K \mid \mathbf{Q}} \beta$.

