Lent Term 2023

Number Fields: Example Sheet 2 of 3

- 1. Let \mathfrak{a} and \mathfrak{b} be ideals in \mathcal{O}_K . Determine the factorisations into prime ideals of $\mathfrak{a} + \mathfrak{b}$ and $\mathfrak{a} \cap \mathfrak{b}$ in terms of those for \mathfrak{a} and \mathfrak{b} . Show that if $\mathfrak{a} + \mathfrak{b} = \mathcal{O}_K$ then $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$ and there is an isomorphism of rings $\mathcal{O}_K/\mathfrak{a}\mathfrak{b} \cong \mathcal{O}_K/\mathfrak{a} \times \mathcal{O}_K/\mathfrak{b}$.
- 2. Let $K = \mathbb{Q}(\sqrt{-5})$. Show by computing norms, or otherwise, that $\mathfrak{p} = (2, 1 + \sqrt{-5})$, $\mathfrak{q}_1 = (7, 3 + \sqrt{-5})$ and $\mathfrak{q}_2 = (7, 3 - \sqrt{-5})$ are prime ideals in \mathcal{O}_K . Which (if any) of the ideals $\mathfrak{p}, \mathfrak{q}_1, \mathfrak{q}_2, \mathfrak{p}^2, \mathfrak{p}\mathfrak{q}_1, \mathfrak{p}\mathfrak{q}_2$ and $\mathfrak{q}_1\mathfrak{q}_2$ are principal? Factor the principal ideal $(9 + 11\sqrt{-5})$ as a product of prime ideals.
- 3. Let $\mathfrak{a} \subset \mathcal{O}_K$ be a non-zero ideal, and m the least positive integer in \mathfrak{a} . Prove that m and $N\mathfrak{a}$ have the same prime factors.
- 4. Let $K = \mathbb{Q}(\sqrt{35})$ and $\omega = 5 + \sqrt{35}$. Verify the ideal equations $(2) = (2, \omega)^2$, $(5) = (5, \omega)^2$ and $(\omega) = (2, \omega)(5, \omega)$. Show that the class group of K contains an element of order 2. Find all ideals of norm dividing 100 and determine which are principal.
- 5. Let p be an odd prime and $K = \mathbb{Q}(\zeta_p)$ where ζ_p is a primitive pth root of unity. Determine $[K : \mathbb{Q}]$. Calculate $N_{K/\mathbb{Q}}(\pi)$ and $\operatorname{Tr}_{K/\mathbb{Q}}(\pi)$ where $\pi = 1 - \zeta_p$.
 - (i) By considering traces $\operatorname{Tr}_{K/\mathbb{Q}}(\zeta_p^j \alpha)$ show that $\mathbb{Z}[\zeta_p] \subset \mathcal{O}_K \subset \frac{1}{p}\mathbb{Z}[\zeta_p]$.
 - (ii) Show that $(1 \zeta_p^r)/(1 \zeta_p^s)$ is a unit for all $r, s \in \mathbb{Z}$ coprime to p, and that $\pi^{p-1} = up$ where u is a unit.
 - (iii) Prove that the natural map $\mathbb{Z} \to \mathcal{O}_K/(\pi)$ is surjective. Deduce that for any $\alpha \in \mathcal{O}_K$ and $m \ge 1$ there exist $a_0, \ldots, a_{m-1} \in \mathbb{Z}$ such that

$$\alpha \equiv a_0 + a_1 \pi + \ldots + a_{m-1} \pi^{m-1} \pmod{\pi^m \mathcal{O}_K}.$$

- (iv) Deduce that $\mathcal{O}_K = \mathbb{Z}[\zeta_p]$.
- 6. Let $K = \mathbb{Q}(\sqrt{-d})$ where d is a positive square-free integer. Establish the following facts about the factorisation of principal ideals in \mathcal{O}_K .
 - (i) If d is composite and p is an odd prime divisor of d then $(p) = p^2$ where p is not principal.
 - (ii) If $d \equiv 1$ or 2 (mod 4) then $(2) = \mathfrak{p}^2$ where \mathfrak{p} is not principal unless d = 1 or 2.
 - (iii) If $d \equiv 7 \pmod{8}$ then $(2) = \mathfrak{p}\overline{\mathfrak{p}}$ where \mathfrak{p} is not principal unless d = 7.

Deduce that if K has class number 1 then either d = 1, 2 or 7, or d is prime and $d \equiv 3 \pmod{8}$.

7. Let $K = \mathbb{Q}(\sqrt{-m})$ where m > 0 is the product of distinct primes p_1, \ldots, p_k . Show that $(p_i) = \mathfrak{p}_i^2$ where $\mathfrak{p}_i = (p_i, \sqrt{-m})$. Show that just two of the ideals $\prod \mathfrak{p}_i^{r_i}$ with $r_i \in \{0, 1\}$ are principal. Deduce that the class group Cl_K contains a subgroup isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{k-1}$. [If you like, just do the case $m \neq 3 \pmod{4}$.]

- 8. Let $K = \mathbb{Q}(\theta)$ where θ is a root of $X^3 4X + 7$. Determine the ring of integers and discriminant of K. Determine the factorisation into prime ideals of $p\mathcal{O}_K$ for p = 2, 3, 5, 7, 11. Find all non-zero ideals \mathfrak{a} of \mathcal{O}_K with $N\mathfrak{a} \leq 11$.
- 9. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $f(X) = X^3 + X^2 2X + 8$. [This polynomial is irreducible over \mathbb{Q} and has discriminant -4×503 .]
 - (i) Show that $\beta = 4/\alpha \in \mathcal{O}_K$ and $\beta \notin \mathbb{Z}[\alpha]$. Deduce that $\mathcal{O}_K = \mathbb{Z}[\alpha, \beta]$.
 - (ii) Show that there is an isomorphism of rings $\mathcal{O}_K/2\mathcal{O}_K \cong \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$. Deduce that 2 splits completely in K.
 - (iii) Use Dedekind's criterion to show that $\mathcal{O}_K \neq \mathbb{Z}[\theta]$ for any θ .
- 10. (i) Let $\mathfrak{a} \subset \mathcal{O}_K$ be a non-zero ideal. Show that every ideal in the ring $\mathcal{O}_K/\mathfrak{a}$ is principal. [*Hint: Use Question 1 to reduce to the case* \mathfrak{a} *is a prime power.*]
 - (ii) Deduce that every ideal in \mathcal{O}_K can be generated by 2 elements.
- 11. Show that $\mathbb{Q}(\sqrt{-d})$ has class number 1 for d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

And some extra questions.

12. The zeta function $\zeta_K(s)$ of a number field K is the infinite sum $\zeta_K(s) = \sum_{\mathfrak{a} \leq \mathcal{O}_K} N(\mathfrak{a})^{-s}$, for $s \in \mathbb{C}$. Show that this factors 'formally' as an infinite product, $\zeta_K(s) = \prod_{\mathfrak{p} \leq \mathcal{O}_K, \mathfrak{p} \text{ prime}} (1 - N(\mathfrak{p})^{-s})^{-1}$. where the product has a term for each prime ideal of \mathcal{O}_K .

(ii) Now let $K = \mathbb{Q}(\sqrt{d})$, where $d \neq 0, 1$ and d is square free. Show the zeta function factors 'formally', $\zeta_K(s) = \zeta_{\mathbb{Q}}(s) \cdot L(\chi, s)$ where $L(\chi, s) = \prod_{p \text{ prime}} (1 - \chi(p)p^{-s})^{-1}$, for an explicit function χ , which you should determine in terms of how the ideal (p) factorises in \mathcal{O}_K .

'Formally' means the terms match up, i.e. you do not need to discuss convergence for this question. We will study convergence of these sums in the last 3 lectures.

- 13. For \mathfrak{a} an ideal in \mathcal{O}_K let $\phi(\mathfrak{a}) = |(\mathcal{O}_K/\mathfrak{a})^*|$. Show that $\phi(\mathfrak{a}) = N(\mathfrak{a}) \prod_{\mathfrak{p}|\mathfrak{a}} (1 \frac{1}{N\mathfrak{p}})$.
- 14. Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f(x))$, where f(x) is the minimum polynomial of α . The trace form on K defines a bilinear form on the real vector space $\mathbb{R}[x]/(f(x))$. Show that the signature of this form is (r + s, s), where r + 2s = n, r is the number of embeddings of K into \mathbb{R} .
- 15. Prove Stickelberger's criterion, that $D_K \equiv 0, 1 \pmod{4}$. [Hint: Start by writing $D_K = (P N)^2 = (P + N)^2 4PN$ where P is a sum over even permutations and N is a sum over odd permutations. Then show that $P + N, PN \in \mathbb{Z}$.] Hence compute the ring of integers of $\mathbb{Q}[X]/(f(X))$ where $f(X) = X^3 - X + 2$.
- 16. Let $B_{r,s}(t) = \{(y_1, \dots, y_r, z_1, \dots, z_s) \in \mathbb{R}^r \times \mathbb{C}^s \mid \sum |y_i| + 2\sum |z_j| \le t\}$. Show that $volB_{r+1,s}(t) = \int_{-t}^t volB_{r,s}(t-|y|)dy$, and $volB_{r,s+1}(t) = \int \int_{|z| \le t/2} volB_{r,s}(t-2|z|)$.

Hence show by induction that $volB_{r,s}(t) = 2^r (\frac{\pi}{2})^s \frac{t^n}{n!}$. [You should do the second integral by choosing polar coordinates, $z = re^{i\theta}$.]