Number Fields: Example Sheet 2 of 3

1. Let \mathfrak{a} and \mathfrak{b} be ideals in \mathcal{O}_{K}. Determine the factorisations into prime ideals of $\mathfrak{a}+\mathfrak{b}$ and $\mathfrak{a} \cap \mathfrak{b}$ in terms of those for \mathfrak{a} and \mathfrak{b}. Show that if $\mathfrak{a}+\mathfrak{b}=\mathcal{O}_{K}$ then $\mathfrak{a} \cap \mathfrak{b}=\mathfrak{a b}$ and there is an isomorphism of rings $\mathcal{O}_{K} / \mathfrak{a b} \cong \mathcal{O}_{K} / \mathfrak{a} \times \mathcal{O}_{K} / \mathfrak{b}$.
2. Let $K=\mathbb{Q}(\sqrt{-5})$. Show by computing norms, or otherwise, that $\mathfrak{p}=(2,1+\sqrt{-5})$, $\mathfrak{q}_{1}=(7,3+\sqrt{-5})$ and $\mathfrak{q}_{2}=(7,3-\sqrt{-5})$ are prime ideals in \mathcal{O}_{K}. Which (if any) of the ideals $\mathfrak{p}, \mathfrak{q}_{1}, \mathfrak{q}_{2}, \mathfrak{p}^{2}, \mathfrak{p q}_{1}, \mathfrak{p q}$ and $\mathfrak{q}_{1} \mathfrak{q}_{2}$ are principal? Factor the principal ideal $(9+11 \sqrt{-5})$ as a product of prime ideals.
3. Let $\mathfrak{a} \subset \mathcal{O}_{K}$ be a non-zero ideal, and m the least positive integer in \mathfrak{a}. Prove that m and $N \mathfrak{a}$ have the same prime factors.
4. Let $K=\mathbb{Q}(\sqrt{35})$ and $\omega=5+\sqrt{35}$. Verify the ideal equations $(2)=(2, \omega)^{2}$, $(5)=(5, \omega)^{2}$ and $(\omega)=(2, \omega)(5, \omega)$. Show that the class group of K contains an element of order 2. Find all ideals of norm dividing 100 and determine which are principal.
5. Let p be an odd prime and $K=\mathbb{Q}\left(\zeta_{p}\right)$ where ζ_{p} is a primitive p th root of unity. Determine $[K: \mathbb{Q}]$. Calculate $N_{K / \mathbb{Q}}(\pi)$ and $\operatorname{Tr}_{K / \mathbb{Q}}(\pi)$ where $\pi=1-\zeta_{p}$.
(i) By considering traces $\operatorname{Tr}_{K / \mathbb{Q}}\left(\zeta_{p}^{j} \alpha\right)$ show that $\mathbb{Z}\left[\zeta_{p}\right] \subset \mathcal{O}_{K} \subset \frac{1}{p} \mathbb{Z}\left[\zeta_{p}\right]$.
(ii) Show that $\left(1-\zeta_{p}^{r}\right) /\left(1-\zeta_{p}^{s}\right)$ is a unit for all $r, s \in \mathbb{Z}$ coprime to p, and that $\pi^{p-1}=u p$ where u is a unit.
(iii) Prove that the natural map $\mathbb{Z} \rightarrow \mathcal{O}_{K} /(\pi)$ is surjective. Deduce that for any $\alpha \in \mathcal{O}_{K}$ and $m \geq 1$ there exist $a_{0}, \ldots, a_{m-1} \in \mathbb{Z}$ such that

$$
\alpha \equiv a_{0}+a_{1} \pi+\ldots+a_{m-1} \pi^{m-1} \quad\left(\bmod \pi^{m} \mathcal{O}_{K}\right)
$$

(iv) Deduce that $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{p}\right]$.
6. Let $K=\mathbb{Q}(\sqrt{-d})$ where d is a positive square-free integer. Establish the following facts about the factorisation of principal ideals in \mathcal{O}_{K}.
(i) If d is composite and p is an odd prime divisor of d then $(p)=\mathfrak{p}^{2}$ where \mathfrak{p} is not principal.
(ii) If $d \equiv 1$ or $2(\bmod 4)$ then $(2)=\mathfrak{p}^{2}$ where \mathfrak{p} is not principal unless $d=1$ or 2 .
(iii) If $d \equiv 7(\bmod 8)$ then $(2)=\mathfrak{p p}$ where \mathfrak{p} is not principal unless $d=7$.

Deduce that if K has class number 1 then either $d=1,2$ or 7 , or d is prime and $d \equiv 3(\bmod 8)$.
7. Let $K=\mathbb{Q}(\sqrt{-m})$ where $m>0$ is the product of distinct primes p_{1}, \ldots, p_{k}. Show that $\left(p_{i}\right)=\mathfrak{p}_{i}^{2}$ where $\mathfrak{p}_{i}=\left(p_{i}, \sqrt{-m}\right)$. Show that just two of the ideals $\prod \mathfrak{p}_{i}^{r_{i}}$ with $r_{i} \in\{0,1\}$ are principal. Deduce that the class group Cl_{K} contains a subgroup isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{k-1}$. [If you like, just do the case $m \not \equiv 3(\bmod 4)$.]
8. Let $K=\mathbb{Q}(\theta)$ where θ is a root of $X^{3}-4 X+7$. Determine the ring of integers and discriminant of K. Determine the factorisation into prime ideals of $p \mathcal{O}_{K}$ for $p=2,3,5,7,11$. Find all non-zero ideals \mathfrak{a} of \mathcal{O}_{K} with $N \mathfrak{a} \leq 11$.
9. Let $K=\mathbb{Q}(\alpha)$ where α is a root of $f(X)=X^{3}+X^{2}-2 X+8$. [This polynomial is irreducible over \mathbb{Q} and has discriminant -4×503.]
(i) Show that $\beta=4 / \alpha \in \mathcal{O}_{K}$ and $\beta \notin \mathbb{Z}[\alpha]$. Deduce that $\mathcal{O}_{K}=\mathbb{Z}[\alpha, \beta]$.
(ii) Show that there is an isomorphism of rings $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong \mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{F}_{2}$. Deduce that 2 splits completely in K.
(iii) Use Dedekind's criterion to show that $\mathcal{O}_{K} \neq \mathbb{Z}[\theta]$ for any θ.
10. (i) Let $\mathfrak{a} \subset \mathcal{O}_{K}$ be a non-zero ideal. Show that every ideal in the ring $\mathcal{O}_{K} / \mathfrak{a}$ is principal. [Hint: Use Question 1 to reduce to the case \mathfrak{a} is a prime power.]
(ii) Deduce that every ideal in \mathcal{O}_{K} can be generated by 2 elements.
11. Show that $\mathbb{Q}(\sqrt{-d})$ has class number 1 for $d=1,2,3,7,11,19,43,67,163$.

And some extra questions.
12. The zeta function $\zeta_{K}(s)$ of a number field K is the infinite sum $\zeta_{K}(s)=\sum_{\mathfrak{a} \leq \mathcal{O}_{K}} N(\mathfrak{a})^{-s}$, for $s \in \mathbb{C}$. Show that this factors 'formally' as an infinite product, $\zeta_{K}(s)=$ $\prod_{\mathfrak{p} \leq \mathcal{O}_{K}, \mathfrak{p} \text { prime }}\left(1-N(\mathfrak{p})^{-s}\right)^{-1}$. where the product has a term for each prime ideal of \mathcal{O}_{K}.
(ii) Now let $K=\mathbb{Q}(\sqrt{d})$, where $d \neq 0,1$ and d is square free. Show the zeta function factors 'formally', $\zeta_{K}(s)=\zeta_{\mathbb{Q}}(s) . L(\chi, s)$ where $L(\chi, s)=\prod_{\text {pprime }}\left(1-\chi(p) p^{-s}\right)^{-1}$, for an explicit function χ, which you should determine in terms of how the ideal (p) factorises in \mathcal{O}_{K}.
'Formally' means the terms match up, i.e. you do not need to discuss convergence for this question. We will study convergence of these sums in the last 3 lectures.
13. For \mathfrak{a} an ideal in \mathcal{O}_{K} let $\phi(\mathfrak{a})=\left|\left(\mathcal{O}_{K} / \mathfrak{a}\right)^{*}\right|$. Show that $\phi(\mathfrak{a})=N(\mathfrak{a}) \prod_{\mathfrak{p} \mid \mathfrak{a}}\left(1-\frac{1}{N \mathfrak{p}}\right)$.
14. Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f(x))$, where $f(x)$ is the minimum polynomial of α. The trace form on K defines a bilinear form on the real vector space $\mathbb{R}[x] /(f(x))$. Show that the signature of this form is $(r+s, s)$, where $r+2 s=n, r$ is the number of embeddings of K into \mathbb{R}.
15. Prove Stickelberger's criterion, that $D_{K} \equiv 0,1(\bmod 4)$. [Hint: Start by writing $D_{K}=(P-N)^{2}=(P+N)^{2}-4 P N$ where P is a sum over even permutations and N is a sum over odd permutations. Then show that $P+N, P N \in \mathbb{Z}$.]
Hence compute the ring of integers of $\mathbb{Q}[X] /(f(X))$ where $f(X)=X^{3}-X+2$.
16. Let $B_{r, s}(t)=\left\{\left(y_{1}, \ldots, y_{r}, z_{1}, \ldots, z_{s}\right) \in \mathbb{R}^{r} \times \mathbb{C}^{s}\left|\sum\right| y_{i}\left|+2 \sum\right| z_{j} \mid \leq t\right\}$. Show that $\operatorname{vol} B_{r+1, s}(t)=\int_{-t}^{t} \operatorname{vol} B_{r, s}(t-|y|) d y$, and $\operatorname{vol} B_{r, s+1}(t)=\iint_{|z| \leq t / 2} \operatorname{vol} B_{r, s}(t-2|z|)$. Hence show by induction that $\operatorname{vol} B_{r, s}(t)=2^{r}\left(\frac{\pi}{2}\right)^{s} \frac{t^{n}}{n!}$. [You should do the second integral by choosing polar coordinates, $z=r e^{i \theta}$.]

