Number Fields: Example Sheet 1 of 3

1. Find the minimal polynomials over \mathbb{Q} of

$$
(1+i) \sqrt{3}, \quad i+\sqrt{3}, \quad 2 \cos (2 \pi / 7) .
$$

2. Which of the following are algebraic integers?

$$
\sqrt{5} / \sqrt{2},(1+\sqrt{3}) / 2, \quad(\sqrt{3}+\sqrt{7}) / 2, \frac{3+2 \sqrt{6}}{1-\sqrt{6}},(1+\sqrt[3]{10}+\sqrt[3]{100}) / 3, \quad 2 \cos (2 \pi / 19)
$$

3. Let $d>1$ be an integer. Show that the only units in the ring

$$
\mathbb{Z}[\sqrt{-d}]=\{a+b \sqrt{-d}: a, b \in \mathbb{Z}\}
$$

are ± 1.
4. (i) Explain why the equations

$$
2 \cdot 11=(5+\sqrt{3})(5-\sqrt{3})
$$

and

$$
(2+\sqrt{7})(3-2 \sqrt{7})=(5-2 \sqrt{7})(18+7 \sqrt{7})
$$

are not inconsistent with the fact $\mathbb{Z}[\sqrt{3}]$ and $\mathbb{Z}[\sqrt{7}]$ have unique factorisation.
(ii) Find equations to show that $\mathbb{Z}[\sqrt{d}]$ is not a UFD for $d=-10,-13,-14$.
5. Let K be a field with $\operatorname{char}(K) \neq 2$. Show that every extension L / K of degree 2 is of the form $L=K(\sqrt{a})$ with $a \in K^{*}, a \notin\left(K^{*}\right)^{2}$. Show further that $K(\sqrt{a})=K(\sqrt{b})$ if and only if $a / b \in\left(K^{*}\right)^{2}$.
6. Let $A \subseteq B \subseteq C$ be rings.
(i) Show that if B is finite over A, and C is finite over B, then C is finite over A.
(ii) Show that if B is integral over A, and C is integral over B, then C is integral over A.

Now let $\mathbb{Q} \subseteq K \subseteq L$ be finite extensions of fields.
(i) Show that if $\alpha \in L$ is integral over \mathcal{O}_{K} it is an algebraic integer.
(ii) Show that if $f \in K[x]$ is monic, and $f^{n} \in \mathcal{O}_{K}[x]$ for some n, then $f \in \mathcal{O}_{K}[x]$.
7. Let $K=\mathbb{Q}(\theta)$ where θ is a root of $X^{3}-2 X+6$. Show that $[K: \mathbb{Q}]=3$ and compute $N_{K / \mathbb{Q}}(\alpha)$ and $\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)$ for $\alpha=n-\theta, n \in \mathbb{Z}$ and $\alpha=1-\theta^{2}, 1-\theta^{3}$.
8. Let $K=\mathbb{Q}(\delta)$ where $\delta=\sqrt[3]{d}$ and $d \neq 0, \pm 1$ is a square-free integer. Show that $\Delta\left(1, \delta, \delta^{2}\right)=-27 d^{2}$. By calculating the traces of $\theta, \delta \theta, \delta^{2} \theta$, and the norm of θ, where $\theta=u+v \delta+w \delta^{2}$ with $u, v, w \in \mathbb{Q}$, show that the ring of integers \mathcal{O}_{K} of K satisfies

$$
\mathbb{Z}[\delta] \subset \mathcal{O}_{K} \subset \frac{1}{3} \mathbb{Z}[\delta] .
$$

9. Let $K=\mathbb{Q}(\alpha)$ be a number field. Suppose $\alpha \in \mathcal{O}_{K}$ and let $f \in \mathbb{Z}[X]$ be its minimal polynomial.
(i) Show that if the discriminant of f is a square-free integer then $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(ii) Compute an integral basis for K in the cases $f(X)=X^{3}+X+1$ and $f(X)=$ $X^{3}-X-4$.
[The discriminant of $X^{3}+a X+b$ is $-4 a^{3}-27 b^{2}$.]
10. Let $K=\mathbb{Q}(i, \sqrt{2})$. By computing the relative traces $\operatorname{Tr}_{K / k}(\theta)$ where k runs through the three quadratic subfields of K, show that the algebraic integers θ in K have the form $\frac{1}{2}(\alpha+\beta \sqrt{2})$, where $\alpha=a+i b$ and $\beta=c+i d$ are Gaussian integers. By considering $N_{K / k}(\theta)$ where $k=\mathbb{Q}(i)$ show that

$$
\begin{aligned}
a^{2}-b^{2}-2 c^{2}+2 d^{2} & \equiv 0 \quad(\bmod 4), \\
a b-2 c d & \equiv 0 \quad(\bmod 2) .
\end{aligned}
$$

Hence prove that an integral basis for K is $1, i, \sqrt{2}, \frac{1}{2}(1+i) \sqrt{2}$, and calculate the discriminant D_{K}.
11. Suppose that K is a number field of degree $n=r+2 s$ in the usual notation $(r$ is the number of real embeddings of K and s the number of pairs of complex conjugate embeddings). Show that the sign of the discriminant D_{K} is $(-1)^{s}$.
12. Let $f(X) \in \mathbb{Q}[X]$ be an irreducible polynomial of degree n, and $\theta \in \mathbb{C}$ a root of f.
(i) Show that $\operatorname{disc}(f)=(-1)^{\binom{n}{2}} N_{K / \mathbb{Q}}\left(f^{\prime}(\theta)\right)$ where $K=\mathbb{Q}(\theta)$.
(ii) Let $f(X)=X^{n}+a X+b$. Write down the matrix representing multiplication by $f^{\prime}(\theta)$ with respect to the basis $1, \theta, \ldots, \theta^{n-1}$ for K. Hence show that

$$
\operatorname{disc}(f)=(-1)^{\binom{n}{2}}\left((1-n)^{n-1} a^{n}+n^{n} b^{n-1}\right) .
$$

The following extra questions are just for fun. They can be answered using material from the Part IB course Groups Rings and Modules.
12. Let $\omega \neq 1$ be a cube root of unity, and let $p \neq 3$ be a prime.
(i) By considering units in $\mathbb{Z}[\omega]$ show that $x^{2}+3 y^{2}$ represents p if and only if $x^{2}+x y+y^{2}$ represents p.
(ii) Use that \mathbb{F}_{p}^{*} is cyclic to find a condition on p for the congruence $x^{2}+x+1 \equiv 0$ $(\bmod p)$ to be soluble.
(iii) Use unique factorisation in $\mathbb{Z}[\omega]$ to determine the set of primes in (i).
13. Show that the rings $\mathbb{Z}[i]$ and $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ are Euclidean. Hence find all integer solutions to the equations $y^{2}=x^{3}-4$ and $y^{2}+y=x^{3}-2$.
14. Let $n \geq 3$ be an integer. Suppose $f, g, h \in \mathbb{C}[X]$ are coprime polynomials satisfying $f^{n}+g^{n}=h^{n}$. Use unique factorisation in $\mathbb{C}[X]$ to construct a new solution to this equation involving polynomials of smaller degree. Deduce that f, g, h must be constant.

