

1. Let $K = \mathbb{Q}(\sqrt{26})$ and let $\varepsilon = 5 + \sqrt{26}$. Use Dedekind's theorem to show that the ideal equations

$$(2) = (2, \varepsilon + 1)^2, \quad (5) = (5, \varepsilon + 1)(5, \varepsilon - 1), \quad (\varepsilon + 1) = (2, \varepsilon + 1)(5, \varepsilon + 1)$$

hold in K . Using Minkowski's bound, show that the class number of K (i.e. the cardinality of the ideal class group $\text{Cl}(\mathcal{O}_K)$) is 2. Verify that ε is the fundamental unit. Deduce that all solutions in integers x, y to the equation $x^2 - 26y^2 = \pm 10$ are given by $x + \sqrt{26}y = \pm \varepsilon^n(\varepsilon \pm 1)$ for $n \in \mathbb{Z}$.

2. Find the factorisations into prime ideals of (2) and (3) in $K = \mathbb{Q}(\sqrt{-23})$. Verify that $(\omega) = (2, \omega)(3, \omega)$ where $\omega = \frac{1}{2}(1 + \sqrt{-23})$. Prove that K has class number 3.

3. Find the factorisations into prime ideals of (2), (3) and (5) in $K = \mathbb{Q}(\sqrt{-71})$. Verify that

$$(\alpha) = (2, \alpha)(3, \alpha)^2 \quad \text{and} \quad (\alpha + 2) = (2, \alpha)^3(3, \alpha - 1)$$

where $\alpha = \frac{1}{2}(1 + \sqrt{-71})$. Find an element of \mathcal{O}_K with norm $2^a \cdot 3^b \cdot 5$ for some $a, b \geq 0$. Hence prove that the class group of K is cyclic and find its order.

4. Compute the ideal class group of $\mathbb{Q}(\sqrt{d})$ for $d = -30, -13, -10, 19$ and 65 .

5. (i) Find the fundamental unit in $\mathbb{Q}(\sqrt{3})$. Determine all the integer solutions of the equations $x^2 - 3y^2 = m$ for $m = -1, 13$ and 121 .
 (ii) Find the fundamental unit in $\mathbb{Q}(\sqrt{10})$. Determine all the integer solutions of the equations $x^2 - 10y^2 = m$ for $m = -1, 6$ and 7 .

6. Find all integer solutions of the equations $y^2 = x^3 - 13$ and $y^2 = x^5 - 10$.

7. Show that $\mathbb{Q}(\sqrt{-d})$ has class number 1 for $d = 1, 2, 3, 7, 11, 19, 43, 67, 163$.

8. Let $K = \mathbb{Q}(\sqrt{-d})$ where $d > 3$ is a square-free integer.

(i) Show that if \mathcal{O}_K is Euclidean then it contains a principal ideal of norm 2 or 3. [Hint: Suppose that $\phi : \mathcal{O}_K - \{0\} \rightarrow \mathbb{N}$ is a Euclidean function. Then choose $x \in \mathcal{O}_K - \{0, \pm 1\}$ with $\phi(x)$ minimal.]
 (ii) Use your answer to Question 7 to give an example where \mathcal{O}_K is a PID, but is not Euclidean.

9. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $f(X) = X^3 - 7X - 1$. [Note that $\text{disc}(f) = 5 \times 269$ is square-free.] Compute $N_{K/\mathbb{Q}}(n + \alpha)$ for $|n| \leq 3$. Hence show that $(5) = P_1^2 P_2$ and $(7) = Q_1 Q_2 Q_3$ where the P_i and Q_j are distinct principal prime ideals of \mathcal{O}_K . Find units generating a subgroup of \mathcal{O}_K^\times of finite index. [Hint: You can show that the units you have found are independent by considering their images in $\mathcal{O}_K/7\mathcal{O}_K \cong \mathbb{F}_7 \times \mathbb{F}_7 \times \mathbb{F}_7$.]

10. Let $K = \mathbb{Q}(\sqrt{d})$ where $d \neq 0, 1$ is a square-free integer. Describe the ring $\mathcal{O}_K/2\mathcal{O}_K$ as explicitly as you can. [The answer depends on $d \bmod 8$.] Show that $\mathbb{Z}[\sqrt{d}]^\times \subset \mathcal{O}_K^\times$ has index 1 or 3. Give an example where the index is 3.

11. Let p be an odd prime and let $\zeta_p = e^{2\pi i/p}$.

- (i) Show that $\mathbb{Q}(\zeta_p)$ contains a quadratic field with discriminant $\pm p$. How does the sign depend on p ?
- (ii) Show using the Minkowski bound that $\mathbb{Z}[\zeta_p]$ is a UFD for $p = 5$ and $p = 7$.

12. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $f(X) = X^3 - 3X + 1$.

- (i) Show that f is irreducible over \mathbb{Q} and compute its discriminant.
- (ii) Show that $3\mathcal{O}_K = P^3$ where $P = (\alpha + 1)$ is a prime ideal in \mathcal{O}_K with residue field \mathbb{F}_3 . Deduce that $\mathcal{O}_K = \mathbb{Z}[\alpha] + 3\mathcal{O}_K$.
- (iii) Show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Compute the class group of K .

13. Let $K = \mathbb{Q}(e^{2\pi i/23})$.

- (i) Show that there are distinct prime ideals Q, Q' of \mathcal{O}_K such that $(2) = QQ'$ and $N(Q) = N(Q') = 2^{11}$. [You may use the fact from Part II Galois Theory that any finite field of order p^n contains a unique subfield of order p^d for each $d|n$.]
- (ii) Using your answer to Question 2, deduce that the class number of K is divisible by 3.

14. Let $B_{r,s}(t) = \{(y_1, \dots, y_r, z_1, \dots, z_s) \in \mathbb{R}^r \times \mathbb{C}^s \mid \sum |y_i| + 2 \sum |z_j| \leq t\}$. Show that $\text{vol } B_{r+1,s}(t) = \int_{-t}^t \text{vol } B_{r,s}(t-|y|) dy$, and $\text{vol } B_{r,s+1}(t) = \int \int_{|z| \leq t/2} \text{vol } B_{r,s}(t-2|z|)$. Hence show by induction that $\text{vol } B_{r,s}(t) = 2^r (\frac{\pi}{2})^s \frac{t^n}{n!}$. [You should do the second integral by choosing polar coordinates, $z = re^{i\theta}$.]