1. Find the minimal polynomials over \mathbb{Q} of

$$
(1+i) \sqrt{3}, \quad i+\sqrt{3}, \quad 2 \cos (2 \pi / 7) .
$$

2. Which of the following are algebraic integers?

$$
\sqrt{5} / \sqrt{2},(1+\sqrt{3}) / 2, \quad(\sqrt{3}+\sqrt{7}) / 2, \frac{3+2 \sqrt{6}}{1-\sqrt{6}}, \quad(1+\sqrt[3]{10}+\sqrt[3]{100}) / 3, \quad 2 \cos (2 \pi / 19)
$$

3. Let $d>1$ be an integer. Show that the only units in the ring

$$
\mathbb{Z}[\sqrt{-d}]=\{a+b \sqrt{-d}: a, b \in \mathbb{Z}\}
$$

are ± 1.
4. Let K be a number field. Show that every extension L / K of degree 2 is of the form $L=K(\sqrt{a})$ with $a \in K^{*}, a \notin\left(K^{*}\right)^{2}$. Show further that there is a isomorphism $K(\sqrt{a}) \cong K(\sqrt{b})$ inducing the identity on K if and only if $a / b \in\left(K^{*}\right)^{2}$.
5. Let $K=\mathbb{Q}(\theta)$ where θ is a root of $X^{3}-2 X+6$. Show that $[K: \mathbb{Q}]=3$ and compute $N_{K / \mathbb{Q}}(\alpha)$ and $\operatorname{tr}_{K / \mathbb{Q}}(\alpha)$ for $\alpha=n-\theta, n \in \mathbb{Z}$ and $\alpha=1-\theta^{2}, 1-\theta^{3}$.
6. Let $K=\mathbb{Q}(\delta)$ where $\delta=\sqrt[3]{d}$ and $d \neq 0, \pm 1$ is a square-free integer. Show that $\operatorname{disc}\left(1, \delta, \delta^{2}\right)=-27 d^{2}$. By calculating the traces of $\theta, \delta \theta, \delta^{2} \theta$, and the norm of θ, where $\theta=u+v \delta+w \delta^{2}$ with $u, v, w \in \mathbb{Q}$, show that the ring of integers \mathcal{O}_{K} of K satisfies

$$
\mathbb{Z}[\delta] \subset \mathcal{O}_{K} \subset \frac{1}{3} \mathbb{Z}[\delta]
$$

7. Let $f(X) \in \mathbb{Q}[X]$ be a monic irreducible polynomial of degree n, and $\theta \in \mathbb{C}$ a root of f.
(i) Show that $\operatorname{disc}(f)=(-1)^{\binom{n}{2}} N_{K / \mathbb{Q}}\left(f^{\prime}(\theta)\right)$ where $K=\mathbb{Q}(\theta)$.
(ii) Let $f(X)=X^{n}+a X+b$. Write down the matrix representing multiplication by $f^{\prime}(\theta)$ with respect to the basis $1, \theta, \ldots, \theta^{n-1}$ for K. Hence show that

$$
\operatorname{disc}(f)=(-1)^{\binom{n}{2}}\left((1-n)^{n-1} a^{n}+n^{n} b^{n-1}\right) .
$$

8. Compute an integral basis for \mathcal{O}_{K} in the cases $K=\mathbb{Q}[X] /\left(X^{3}+X+1\right)$ and $K=\mathbb{Q}[X] /\left(X^{3}-X-4\right)$.
9. Suppose that $K=\mathbb{Q}(\theta)$ is a number field of degree $n=r+2 s$ in the usual notation (r is the number of real embeddings of K and s the number of pairs of complex conjugate embeddings). Show that the sign of the discriminant of K is $(-1)^{s}$.
10. Let $K=\mathbb{Q}(i, \sqrt{2})$. By computing the relative traces $\operatorname{tr}_{K / k}(\theta)$ where k runs through the three quadratic subfields of K, show that the algebraic integers θ in K have the form $\frac{1}{2}(\alpha+\beta \sqrt{2})$, where $\alpha=a+i b$ and $\beta=c+i d$ are Gaussian integers. By considering $N_{K / k}(\theta)$ where $k=\mathbb{Q}(i)$ show that

$$
\begin{aligned}
a^{2}-b^{2}-2 c^{2}+2 d^{2} & \equiv 0 \quad(\bmod 4), \\
a b-2 c d & \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

Hence prove that an integral basis for \mathcal{O}_{K} is $1, i, \sqrt{2}, \frac{1}{2}(1+i) \sqrt{2}$, and calculate the discriminant of K.
11. Let K be a quadratic field and $I \subset \mathcal{O}_{K}$ an ideal. Show that $I=(\alpha, \beta)$ for some $\alpha \in \mathbb{Z}$ and $\beta \in \mathcal{O}_{K}$. Let $c=\operatorname{gcd}\left(\alpha^{2}, \alpha \operatorname{tr}_{K / \mathbb{Q}} \beta, N_{K / \mathbb{Q}} \beta\right)$. By computing the norm and trace show that $\frac{\alpha \beta}{c} \in \mathcal{O}_{K}$. Deduce that $(\alpha, \beta)\left(\alpha, \beta^{\prime}\right)$ is principal, where $\beta \beta^{\prime}=N_{K / \mathbb{Q}} \beta$.

