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1. Find the minimal polynomials over Q of

(1 + i)
√

3, i+
√

3, 2 cos(2π/7).

2. Which of the following are algebraic integers?

√
5/
√

2, (1 +
√

3)/2, (
√

3 +
√

7)/2,
3 + 2

√
6

1−
√

6
, (1 +

3
√

10 +
3
√

100)/3, 2 cos(2π/19).

3. Let d > 1 be an integer. Show that the only units in the ring

Z[
√
−d] = {a+ b

√
−d : a, b ∈ Z}

are ±1.

4. (i) Explain why the equations

2 · 11 = (5 +
√

3)(5−
√

3)

and
(2 +

√
7)(3− 2

√
7) = (5− 2

√
7)(18 + 7

√
7)

are not inconsistent with the fact Z[
√

3] and Z[
√

7] have unique factorisation.

(ii) Find equations to show that Z[
√
d] is not a UFD for d = −10,−13,−14.

5. Let K be a field with char(K) 6= 2. Show that every extension L/K of degree 2 is of

the form L = K(
√
a) with a ∈ K∗, a 6∈ (K∗)2. Show further that K(

√
a) = K(

√
b)

if and only if a/b ∈ (K∗)2.

6. Let A ⊆ B ⊆ C be rings.

(i) Show that if B is finite over A, and C is finite over B, then C is finite over A.

(ii) Show that if B is integral over A, and C is integral over B, then C is integral
over A.

Now let Q ⊆ K ⊆ L be finite extensions of fields.

(i) Show that if α ∈ L is integral over OK it is an algebraic integer.

(ii) Show that if f ∈ K[x] is monic, and fn ∈ OK [x] for some n, then f ∈ OK [x].

7. Let K = Q(θ) where θ is a root of X3 − 2X + 6. Show that [K : Q] = 3 and
compute NK/Q(α) and TrK/Q(α) for α = n− θ, n ∈ Z and α = 1− θ2, 1− θ3.

8. Let K = Q(δ) where δ = 3
√
d and d 6= 0,±1 is a square-free integer. Show that

∆(1, δ, δ2) = −27d2. By calculating the traces of θ, δθ, δ2θ, and the norm of θ,
where θ = u + vδ + wδ2 with u, v, w ∈ Q, show that the ring of integers OK of K
satisfies

Z[δ] ⊂ OK ⊂ 1
3
Z[δ].



9. Let K = Q(α) be a number field. Suppose α ∈ OK and let f ∈ Z[X] be its minimal
polynomial.

(i) Show that if the discriminant of f is a square-free integer then OK = Z[α].

(ii) Compute an integral basis for K in the cases f(X) = X3 +X + 1 and f(X) =
X3 −X − 4.

[The discriminant of X3 + aX + b is −4a3 − 27b2.]

10. Let K = Q(i,
√

2). By computing the relative traces TrK/k(θ) where k runs through
the three quadratic subfields of K, show that the algebraic integers θ in K have
the form 1

2
(α + β

√
2), where α = a + ib and β = c + id are Gaussian integers. By

considering NK/k(θ) where k = Q(i) show that

a2 − b2 − 2c2 + 2d2 ≡ 0 (mod 4),

ab− 2cd ≡ 0 (mod 2).

Hence prove that an integral basis for K is 1, i,
√

2, 1
2
(1 + i)

√
2, and calculate the

discriminant DK .

11. Suppose that K is a number field of degree n = r+2s in the usual notation (r is the
number of real embeddings of K and s the number of pairs of complex conjugate
embeddings). Show that the sign of the discriminant DK is (−1)s.

12. Let f(X) ∈ Q[X] be an irreducible polynomial of degree n, and θ ∈ C a root of f .

(i) Show that disc(f) = (−1)(
n
2)NK/Q(f ′(θ)) where K = Q(θ).

(ii) Let f(X) = Xn + aX + b. Write down the matrix representing multiplication
by f ′(θ) with respect to the basis 1, θ, . . . , θn−1 for K. Hence show that

disc(f) = (−1)(
n
2)((1− n)n−1an + nnbn−1).

The following extra questions are just for fun. They can be answered using material
from the Part IB course Groups Rings and Modules.

12. Let ω 6= 1 be a cube root of unity, and let p 6= 3 be a prime.

(i) By considering units in Z[ω] show that x2 + 3y2 represents p if and only if
x2 + xy + y2 represents p.

(ii) Use that F∗p is cyclic to find a condition on p for the congruence x2 + x+ 1 ≡ 0
(mod p) to be soluble.

(iii) Use unique factorisation in Z[ω] to determine the set of primes in (i).

13. Show that the rings Z[i] and Z[1+
√
−7

2
] are Euclidean. Hence find all integer solutions

to the equations y2 = x3 − 4 and y2 + y = x3 − 2.

14. Let n ≥ 3 be an integer. Suppose f, g, h ∈ C[X] are coprime polynomials satisfying
fn + gn = hn. Use unique factorisation in C[X] to construct a new solution to
this equation involving polynomials of smaller degree. Deduce that f, g, h must be
constant.


