
Lent Term 2015

Number Fields: Example Sheet 3 of 3

1. Let K = Q(
√
26) and let ε = 5 +

√
26. Use Dedekind’s theorem to show that the

ideal equations

(2) = (2, ε+ 1)2, (5) = (5, ε+ 1)(5, ε− 1), (ε+ 1) = (2, ε+ 1)(5, ε+ 1)

hold in K. Using Minkowski’s bound, show that K has class number 2. Verify that
ε is the fundamental unit. Deduce that all solutions in integers x, y to the equation
x2 − 26y2 = ±10 are given by x+

√
26y = ±εn(ε± 1) for n ∈ Z.

2. Find the factorisations into prime ideals of (2) and (3) in K = Q(
√
−23). Verify

that (ω) = (2, ω)(3, ω) where ω = 1

2
(1 +

√
−23). Prove that K has class number 3.

3. Find the factorisations into prime ideals of (2), (3) and (5) inK = Q(
√
−71). Verify

that
(α) = (2, α)(3, α)2 and (α + 2) = (2, α)3(3, α− 1)

where α = 1

2
(1 +

√
−71). Find an element of OK with norm 2a · 3b · 5 for some

a, b ≥ 0. Hence prove that the class group of K is cyclic and find its order.

4. Compute the ideal class group of Q(
√
d) for d = −30, −13, −10, 19 and 65.

5. (i) Find the fundamental unit in Q(
√
3). Determine all the integer solutions of the

equations x2 − 3y2 = m for m = −1, 13 and 121.

(ii) Find the fundamental unit in Q(
√
10). Determine all the integer solutions of

the equations x2 − 10y2 = m for m = −1, 6 and 7.

6. Find all integer solutions of the equations y2 = x3 − 13 and y2 = x5 − 10.

7. Let K = Q(
√
−d) where d > 3 is a square-free integer.

(i) Show that if OK is Euclidean then it contains a principal ideal of norm 2 or 3.
[Hint: Suppose that φ : OK − {0} → N is a Euclidean function. Then choose

x ∈ OK − {0,±1} with φ(x) minimal.]

(ii) Use your answer to Problem Sheet 2, question 11 to give an example where OK

is a PID, but is not Euclidean.

8. Let K = Q(
√
d) where d 6= 0, 1 is a square-free integer. Describe the ring OK/2OK

as explicitly as you can. [The answer depends on d mod 8.] Show that Z[
√
d]× ⊂ O×

K

has index 1 or 3. Give an example where the index is 3.

9. Let p be an odd prime.

(i) Compute the discriminant of (Xp − 1)/(X − 1). Deduce that Q(ζp) contains a
quadratic field with discriminant ±p.

(ii) Show using the Minkowski bound that Z[ζp] is a UFD for p = 5 and p = 7.
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10. Let K = Q(ζ8) and p = (1 − ζ8). Show that Np = 2 and that complex conjuga-
tion acts trivially on OK/p

2. Find a fundamental unit in K. [Hint: First find a

fundamental unit in Q(ζ8) ∩ R = Q(
√
2). Then imitate a proof in lectures.]

11. Let K = Q(α) where α is a root of f(X) = X3 − 3X + 1.

(i) Show that f is irreducible over Q and compute its discriminant.

(ii) Show that 3OK = p3 where p = (α + 1) is a prime ideal in OK with residue
field F3. Deduce that OK = Z[α] + 3OK . [Hint: See Sheet 2, Question 5.]

(iii) Show that OK = Z[α]. Compute the class group of K.

The following extra questions are just for fun. Questions 18 and 19 need Galois Theory.

13. Let K be a number field. Show that there is a number field L containing K such
that for every ideal a ⊂ OK the ideal in OL generated by a (denoted aOL) is
principal. [Hint: Use that some power of a is principal.]

14. Let L/K be an extension of number fields.

(i) Show that if P is a prime ideal in OL then p = P∩OK is a prime ideal in OK

and NP is a power of Np.

(ii) Let L = Q(i,
√
5). Show that |DL| ≤ 400 and that the primes 2 and 3 are inert

in some quadratic field K ⊂ L. Deduce that L has class number 1.

15. Show that there are no integer solutions to x2 − 82y2 = ±2.

16. Let L/K be an extension of number fields. Show that if p is a prime of OK then
pOL 6= OL. [Hint: Let x1, . . . , xm generate OL as an OK-module. If pOL = OL

then we can write xi =
∑

aijxj for some aij ∈ p.] Deduce that if a and b are ideals
in OK with aOL = bOL then a = b.

17. Let L/K be an extension of number fields. Let p be a rational prime. Show using
Questions 14(i) and 16 that (i) If p is unramified in L then it is unramified in K.
(ii) If p is totally ramified in L then it is totally ramified in K.

18. Let K be a number field with K/Q Galois. Let p be a rational prime with
pOK = pe1

1
. . . perr , where the pi are distinct prime ideals. Use the Chinese Re-

mainder Theorem (Sheet 2, Question 1) to find x ∈ p1 with x /∈ pi for 2 ≤ i ≤ r.
By considering NK/Q(x) show that Gal(K/Q) acts transitively on {p1, . . . , pr}.

19. Let K = Q(
√
−23) ⊂ L = Q(ζ23). Let p ⊂ OK be a prime dividing 2. Show that

if pOL = xOL for some x ∈ OL then p11OL = NL/K(x)OL. Deduce by Questions 2
and 16 that Z[ζ23] is not a UFD.

20. Let d 6= 0, 1 be a square free integer, K = Q(
√
d), D = DK . Define χD(p) =

(

D
p

)

if p > 2, and p prime, and χD(2) = 1 if d = 1 mod 8, χD(2) = −1 if d = 5
mod 8, and χD(2) = 0 otherwise. Extend this to a function on Z by setting
χD(mn) = χD(m)χD(n). Using quadratic reciprocity, show that χD is D-periodic:
χD(a + Db) = χD(a), a, b ∈ Z. [Hint: You will find it easier to do the cases

d = 3, 2, 1 mod 4 separately ].
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