

Number Fields: Example Sheet 2 of 3

- Let \mathfrak{a} and \mathfrak{b} be coprime ideals in \mathcal{O}_K . (This means there are no proper ideals dividing both \mathfrak{a} and \mathfrak{b} .) Show that $\mathfrak{a} + \mathfrak{b} = \mathcal{O}_K$ and $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{ab}$. Deduce that there is an isomorphism of rings $\mathcal{O}_K/\mathfrak{ab} \cong \mathcal{O}_K/\mathfrak{a} \times \mathcal{O}_K/\mathfrak{b}$.
- Let $K = \mathbb{Q}(\sqrt{-5})$. Show by computing norms, or otherwise, that $\mathfrak{p} = (2, 1 + \sqrt{-5})$, $\mathfrak{q}_1 = (7, 3 + \sqrt{-5})$ and $\mathfrak{q}_2 = (7, 3 - \sqrt{-5})$ are prime ideals in \mathcal{O}_K . Which (if any) of the ideals $\mathfrak{p}, \mathfrak{q}_1, \mathfrak{q}_2, \mathfrak{p}^2, \mathfrak{pq}_1, \mathfrak{pq}_2$ and $\mathfrak{q}_1\mathfrak{q}_2$ are principal? Factor the principal ideal $(9 + 11\sqrt{-5})$ as a product of prime ideals.
- Let $\mathfrak{a} \subset \mathcal{O}_K$ be a non-zero ideal, and m the least positive integer in \mathfrak{a} . Prove that m and $N\mathfrak{a}$ have the same prime factors.
- Let $K = \mathbb{Q}(\sqrt{35})$ and $\omega = 5 + \sqrt{35}$. Verify the ideal equations $(2) = (2, \omega)^2$, $(5) = (5, \omega)^2$ and $(\omega) = (2, \omega)(5, \omega)$. Show that the class group of K contains an element of order 2. Find all ideals of norm dividing 10 and determine which are principal.
- Let p be an odd prime and $K = \mathbb{Q}(\zeta_p)$ where ζ_p is a primitive p th root of unity. Determine $[K : \mathbb{Q}]$. Calculate $N_{K/\mathbb{Q}}(\pi)$ and $\text{Tr}_{K/\mathbb{Q}}(\pi)$ where $\pi = 1 - \zeta_p$.
 - By considering traces $\text{Tr}_{K/\mathbb{Q}}(\zeta_p^j \alpha)$ show that $\mathbb{Z}[\zeta_p] \subset \mathcal{O}_K \subset \frac{1}{p}\mathbb{Z}[\zeta_p]$.
 - Show that $(1 - \zeta_p^r)/(1 - \zeta_p^s)$ is a unit for all $r, s \in \mathbb{Z}$ coprime to p , and that $\pi^{p-1} = up$ where u is a unit.
 - Prove that the natural map $\mathbb{Z} \rightarrow \mathcal{O}_K/(\pi)$ is surjective. Deduce that for any $\alpha \in \mathcal{O}_K$ and $m \geq 1$ there exist $a_0, \dots, a_{m-1} \in \mathbb{Z}$ such that

$$\alpha \equiv a_0 + a_1\pi + \dots + a_{m-1}\pi^{m-1} \pmod{\pi^m \mathcal{O}_K}.$$

- Deduce that $\mathcal{O}_K = \mathbb{Z}[\zeta_p]$.

- Let $K = \mathbb{Q}(\sqrt{-d})$ where d is a positive square-free integer. Establish the following facts about the factorisation of principal ideals in \mathcal{O}_K .
 - If d is composite and p is an odd prime divisor of d then $(p) = \mathfrak{p}^2$ where \mathfrak{p} is not principal.
 - If $d \equiv 1$ or $2 \pmod{4}$ then $(2) = \mathfrak{p}^2$ where \mathfrak{p} is not principal unless $d = 1$ or 2 .
 - If $d \equiv 7 \pmod{8}$ then $(2) = \mathfrak{p}\bar{\mathfrak{p}}$ where \mathfrak{p} is not principal unless $d = 7$.

Deduce that if K has class number 1 then either $d = 1, 2$ or 7 , or d is prime and $d \equiv 3 \pmod{8}$.

- Let $K = \mathbb{Q}(\sqrt{-m})$ where $m > 0$ is the product of distinct primes p_1, \dots, p_k . Show that $(p_i) = \mathfrak{p}_i^2$ where $\mathfrak{p}_i = (p_i, \sqrt{-m})$. When are the ideals $\prod \mathfrak{p}_i^{r_i}$ and $\prod \mathfrak{p}_i^{s_i}$ in the same ideal class? Deduce that the class group Cl_K contains a subgroup isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{k-1}$. [If you like, just do the case $m \not\equiv 3 \pmod{4}$.]

8. Prove that if $x \in K$ is integral over \mathcal{O}_K (i.e. x is a root of a monic polynomial with coefficients in \mathcal{O}_K) then $x \in \mathcal{O}_K$.
9. Let $K = \mathbb{Q}(\theta)$ where θ is a root of $X^3 - 4X + 7$. Determine the ring of integers and discriminant of K . Determine the factorisation into prime ideals of $p\mathcal{O}_K$ for $p = 2, 3, 5, 7, 11$. Find all non-zero ideals \mathfrak{a} of \mathcal{O}_K with $N\mathfrak{a} \leq 11$.
10. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $f(X) = X^3 + X^2 - 2X + 8$. [This polynomial is irreducible over \mathbb{Q} and has discriminant -4×503 .]
 - (i) Show that $\beta = 4/\alpha \in \mathcal{O}_K$ and $\beta \notin \mathbb{Z}[\alpha]$. Deduce that $\mathcal{O}_K = \mathbb{Z}[\alpha, \beta]$.
 - (ii) Show that there is an isomorphism of rings $\mathcal{O}_K/2\mathcal{O}_K \cong \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$. Deduce that 2 splits completely in K .
 - (iii) Use Dedekind's criterion to show that $\mathcal{O}_K \neq \mathbb{Z}[\theta]$ for any θ .
11. (i) Let $\mathfrak{a} \subset \mathcal{O}_K$ be a non-zero ideal. Show that every ideal in the ring $\mathcal{O}_K/\mathfrak{a}$ is principal. [Hint: Use Question 1 to reduce to the case \mathfrak{a} is a prime power.]
(ii) Deduce that every ideal in \mathcal{O}_K can be generated by 2 elements.

The following extra questions may or may not be harder than the earlier questions.

12. Let K be a quadratic field and $\mathfrak{a} \subset \mathcal{O}_K$ an ideal. Show that $\mathfrak{a} = (\alpha, \beta)$ for some $\alpha \in \mathbb{Z}$ and $\beta \in \mathcal{O}_K$. Let $c = \gcd(\alpha^2, \alpha \operatorname{Tr}\beta, N\beta)$. By computing the norm and trace show that $\frac{\alpha\beta}{c} \in \mathcal{O}_K$. Deduce that $(\alpha, \beta)(\alpha, \overline{\beta})$ is principal where $\overline{\beta}$ is the conjugate of β .
13. Let K be a number field and p a rational prime. It can be shown that p ramifies in K if and only if p divides the discriminant D_K . Explain how this follows from Dedekind's criterion in the case $[K : \mathbb{Q}] = 2$, or more generally when $\mathcal{O}_K = \mathbb{Z}[\theta]$ for some θ .
14. For \mathfrak{a} an ideal in \mathcal{O}_K let $\phi(\mathfrak{a}) = |(\mathcal{O}_K/\mathfrak{a})^*|$. Show that $\phi(\mathfrak{a}) = N(\mathfrak{a}) \prod_{\mathfrak{p}|\mathfrak{a}} (1 - \frac{1}{N\mathfrak{p}})$.
15. Prove Stickelberger's criterion, that $D_K \equiv 0, 1 \pmod{4}$. [Hint: Suppose first that K/\mathbb{Q} is Galois. Write $D_K = (P - N)^2 = (P + N)^2 - 4PN$ where P is a sum over even permutations and N is a sum over odd permutations. Then show that $P + N, PN \in \mathbb{Z}$. For the general case, embed K in a Galois closure L/\mathbb{Q} .] Hence compute the ring of integers of $\mathbb{Q}[X]/(f(X))$ where $f(X) = X^3 - X + 2$.