

NUMBER FIELDS, EXX. SHEET 3

N. I. SHEPHERD-BARRON

(1) Suppose that K is a number field. Define the *inverse different* \mathcal{D}_K^{-1} by

$$\mathcal{D}_K^{-1} = \{x \in K : \text{Tr}(xy) \in \mathbb{Z} \ \forall y \in \mathcal{O}_K\}.$$

(i) Show that \mathcal{D}_K^{-1} is a fractional ideal of K .

The *different* \mathcal{D}_K is defined as the inverse of \mathcal{D}_K^{-1} , $\mathcal{D}_K = (\mathcal{D}_K^{-1})^{-1}$.

(ii) Show that \mathcal{D}_K is an integral ideal of \mathcal{O}_K .

(iii) Show that $N_{K/\mathbb{Q}}(\mathcal{D}_K) = |d_K|$, where d_K is the discriminant of K .

(iv) Assume that $\mathcal{O}_K = \mathbb{Z}[x]$ for some x , and that $f \in \mathbb{Z}[X]$ is the minimal polynomial of x . Suppose that $x = x_1, \dots, x_n$ are the conjugates of x . Show that

$$\frac{1}{f(T)} = \sum_1^n \frac{1}{f'(x_i)(T - x_i)}.$$

(v) Deduce that $\text{Tr}_{K/\mathbb{Q}}\left(\frac{x^r}{f'(x)}\right) = 0$ if $0 \leq r < n - 1$ and $= 1$ if $r = n - 1$.

(vi) Deduce that $\mathcal{D}_K = (f'(x))$.

(2) (i) Suppose that $m > 0$ is even and square-free. Show that, if the class number of $\mathbb{Q}(\sqrt{-m})$ is prime to 3, then the equation $y^3 = x^2 + m$ has at most two solutions in integers.

(ii) Compute the class group of $\mathbb{Q}(\sqrt{-47})$.

(iii) Find all integer solutions to $4y^3 = x^2 + 1175$.

(3) Suppose that $m > 0$ is the product of k distinct primes p_i and that $K = \mathbb{Q}(\sqrt{-m})$. Show that $(p_i) = P_i^2$ for a prime ideal P_i of \mathcal{O}_K , and determine when two ideals $\prod_1^k P_i^{r_i}, \prod_1^k P_i^{s_i}$ are in the same class. Deduce that the class number h_K is divisible by 2^{k-1} .

(4*) (i) Suppose that I is an integral ideal in a ring of integers \mathcal{O}_K and that $N(I) = p_1 \dots p_k = N$, the product of k primes (not necessarily distinct). Show that I is the product of at most k prime ideals (not necessarily distinct).

(ii) Find an upper bound, in terms of N and the degree $[K : \mathbb{Q}]$, for the number of integral ideals of norm N in \mathcal{O}_K .

(5*) Compute the class groups of $\mathbb{Q}(\sqrt{-6})$ and $\mathbb{Q}(\sqrt{6})$.

(6) Suppose that p, q are distinct odd primes such that p is a square modulo q and q is a square modulo p . Show that $x^2 - py^2 - qz^2 = 0$ has a non-trivial solution in integers.

[The natural way to do this is via the Hasse principle, which is a theorem to the effect that a quadratic form over a number field K has a non-trivial zero if

and only if it has one over every completion of K . It's worth learning about completions, local fields and the Hasse principle (e.g., Serre, *A Course in Arithmetic*, ch. IV).]

(i) Show that at least one of p, q is congruent to 1 mod 4 and that there are integers u, v with

$$u^2 \equiv p \pmod{4q}, \quad u \equiv 0 \pmod{p}, \quad v^2 \equiv q \pmod{p}, \quad v \equiv 0 \pmod{q}.$$

(ii) Define

$$\Lambda = \{(x, y, z) \in \mathbb{Z}^3 : z \equiv 0 \pmod{2}, x \equiv uy + vz \pmod{2pq}\}.$$

Show that Λ is a lattice in \mathbb{R}^3 and that if $(x, y, z) \in \Lambda$, then $x^2 - py^2 - qz^2 \equiv 0 \pmod{4pq}$.

(iii) Now use the ellipsoid $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + py^2 + qz^2 < 4pq\}$ show that $x^2 - py^2 - qz^2 = 0$ has a non-trivial solution in integers.

[Hint: The covolume of Λ and the volume of X will be useful. Further hint: the right answers are $4pq$ and $32\pi pq/3$. And the phrase “Minkowski’s convex bodies theorem” is helpful.]

References

E-mail address: nisb@dpmms.cam.ac.uk