Lent Term 2008 Matthias Strauch

Number Fields: Example Sheet 3

(1) Let D > 1 be a square-free integer and put K = Q(v/D). Recall that the fundamental unit of K
is an element g9 € O} such that ¢p = min{e € O}, | ¢ > 1}. Use the algorithm explained in the
lectures to determine the fundamental unit of K for D = 13,17, 26, 29, 35,37,53 and 77.

(2) Let m > 1 and Dy,..., D, be pairwise co-prime integers, D; ¢ {0,1} for all i. Put K =
Q(v/D1,...,v/Dy,). Show by induction over m that [K : Q] = 2™.

(3) For a number field K let as usual r and s denote the number of real and half the number of complex
embeddings, respectively. Determine r and s in the following cases:

(a) K =Q(v/Dy,...,v/Dy,) as in the preceding exercise.
(b) K = Q( ¥/D), where D > 1 is a square-free integer and m > 2.

(4) Let K be a number field. Recall that a prime number p is called ramified in K if in the prime ideal
decomposition [p] = pOg = p{* -+ - p& at least one of the exponents e; is > 1. Now let K = Q(v/D)
for some square-free integer D ¢ {0,1}. On a previous example sheet we have seen that Ok = Z[0)]
for some 0 € Ok. Use the explicit description of § and Dedekind’s theorem to give a direct proof
that the primes which ramify in K are the prime divisors of the discriminant of K.

(5) Let K = Q(+/26) and let ¢ = 5 + 1/26. Use Dedekind’s theorem to show that the ideal equations

2] = [2,e + 1], [5] = [B,e +1][5,e — 1], [e+1] = [2,e + 1][5,e + 1]

hold in K. Deduce that K has class number two. (Argue with the Minkowski constant.)

¢ is the fundamental unit of K, by a preceding exercise. Use this fact to show that all solutions in
integers x, y of the equation 22 — 26y? = £10 are given by

x4+ V26y =+xe"(et1l), n=0,£1,%2,...

(6) Show that ¢ = gfﬁ is a unit in K = Q(v/7). Show further that [2] is the square of the principal

ideal in Ok generated by 3 4+ /7. Use the Minkowski constant to show that K has class number
one.

Assuming further that € is the fundamental unit in K, show that all solutions in integers z, y of the
equation 22 — 7y? = 2 are given by

T4 V26y = +e"(3+VT7), n=0,+1,+2,...
(7) Let K = Q(v/35). By Dedekind’s theorem, or otherwise, show that the ideal equations

[2] = [27w]27 [5] = [57w]27 [w] = [27w][57w]

hold in K, where w = 5+ v/35. Deduce that K has class number two. (Argue with the Minkowski
constant.)

w—+ 1 is the fundamental unit of K, by a preceding exercise. Hence show that all solutions in integers
x, y of the equation 22 — 35y> = —10 are given by

x4+ V35y =tww+1)", n=0,+1,+2,...

Calculate the particular solution x,y for n = 1.



(8)

(10)

(11)

(13)

Let K = Q(v/—34). By Dedekind’s theorem, or otherwise, factorise 2, 3, 5 and 7 into prime ideals
in O. Show that the ideal equations
[w] =[5, w][7,w], [w+3] = [2,w+3][5,w + 3

hold in K, where w = 1 4+ v/—34. Deduce that the class group of K is cyclic of order four. (Argue
with the Minkowski constant.)

By exercises (6) and (7) of example sheet 2, we know the class groups of the imaginary quadratic
fields Q(v/—5) and Q(v/—11). Use this information to find all solutions in integers of the diophantine
equations

P+ 5=a3, 2+ 11 =23,
Let K be a number field of degree n = r 4+ 2s. Denote by p1,..., p, the real embeddings of K and

by o01,61,...,0s, 05 the complex embeddings of K into C. Recall the map A as introduced in the
lectures

A Ok — R, ams (log(|ni(a)l,. .. log(|7r(@)]), log(lo1 (a)[?), .. . Jog(los () ) -

The image of A is a complete lattice in the hyperplane

T s
H:{(xl,...,xr,&,...,gs) ERT"’_S’ in+Z§j :()}.
i=1 j=1

We consider R"* with its standard scalar product and restrict it to H, thereby getting a well-defined
notion of volume on H. Show that the volume of a fundamental mesh of the lattice I' = A\(O},) is
equal to /7 + sRx where Ry is the absolute value of the determinant of an arbitrary minor of rank
t =r 4+ s — 1 of the following matrix

Aer) oo Aaer)
Avprer) oo Agaler)
Here €1,...,&; is a system of fundamental units and (A1(g;),. .., Ar1(g:))" = A(g;), in the standard
coordinates on R, Ry is called the regulator of K. (Hint: The column vector \g = —~—(1,...,1)*

VTr+s
is perpendicular to H and of length one; the volume of a fundamental mesh of I' is thus given by

the absolute value of the determinant of the matrix (Ag A(e1) - - - A(e¢)). Then add all rows to a fixed
one.)

Let K C L be number fields and L = K(6) for some § € Op. Let f(X) € Ok[z] be the minimal
polynomial of 6 over K, and put ¢ = {a € Op | a- O C Oklf]}. This is a non-zero ideal of
Opr. Generalise Dedekind’s theorem as follows: if the prime ideal p C Ok is co-prime to ¢ (i.e.
pOr + ¢ = Op), and f(z) = fi(x)® --- f(x)* is the decomposition of f(x) = f(x) mod p in
(Ok/p)[z] into irreducible monic polynomials, then Bi = [f1(0),p],..., B = [f-(0),p] are the r
different prime ideals of O, containing pOr, and pOr, = P§' - - - P&. (Here fi(z) € Ox[z] is a monic
polynomial whose reduction modulo p is f;.)

Let K = Q(v/D1,...,v/Dy,) with D1,...,D,, be pairwise co-prime integers, D; ¢ {0,1} for all 1.
Use the assertion of the preceding exercise that, up to at most finitely many exceptions, a prime
number p splits completely in Ok, i.e. [p] = p1---py with n = 2 and pairwise different prime ideals
pi, if and only if all the congruences X? = Dy, ..., X2 = D,, have a solution modulo p.

Use the preceding exercise and the quadratic reciprocity law to show that, up to at most finitely
many exceptions, a prime p splits completely in Q(4, v/3) if and only if p = 1 modulo 12.

Comments, corrections and queries can be send to me at M.Strauch@dpmms.cam.ac.uk



