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Number Fields: Example Sheet 3

(1) Let D > 1 be a square-free integer and put K = Q(
√

D). Recall that the fundamental unit of K
is an element ε0 ∈ O∗

K such that ε0 = min{ε ∈ O∗
K | ε > 1}. Use the algorithm explained in the

lectures to determine the fundamental unit of K for D = 13, 17, 26, 29, 35, 37, 53 and 77.

(2) Let m ≥ 1 and D1, . . . , Dm be pairwise co-prime integers, Di /∈ {0, 1} for all i. Put K =
Q(

√
D1, . . . ,

√
Dm). Show by induction over m that [K : Q] = 2m.

(3) For a number field K let as usual r and s denote the number of real and half the number of complex
embeddings, respectively. Determine r and s in the following cases:

(a) K = Q(
√

D1, . . . ,
√

Dm) as in the preceding exercise.

(b) K = Q( m

√
D), where D > 1 is a square-free integer and m ≥ 2.

(4) Let K be a number field. Recall that a prime number p is called ramified in K if in the prime ideal

decomposition [p] = pOK = pe1

1
· · · per

r at least one of the exponents ei is > 1. Now let K = Q(
√

D)
for some square-free integer D /∈ {0, 1}. On a previous example sheet we have seen that OK = Z[θ]
for some θ ∈ OK . Use the explicit description of θ and Dedekind’s theorem to give a direct proof
that the primes which ramify in K are the prime divisors of the discriminant of K.

(5) Let K = Q(
√

26) and let ε = 5 +
√

26. Use Dedekind’s theorem to show that the ideal equations

[2] = [2, ε + 1]2 , [5] = [5, ε + 1][5, ε − 1] , [ε + 1] = [2, ε + 1][5, ε + 1]

hold in K. Deduce that K has class number two. (Argue with the Minkowski constant.)

ε is the fundamental unit of K, by a preceding exercise. Use this fact to show that all solutions in
integers x, y of the equation x2 − 26y2 = ±10 are given by

x +
√

26y = ±εn(ε ± 1) , n = 0,±1,±2, . . .

(6) Show that ε = 3+
√

7

3−
√

7
is a unit in K = Q(

√
7). Show further that [2] is the square of the principal

ideal in OK generated by 3 +
√

7. Use the Minkowski constant to show that K has class number
one.

Assuming further that ε is the fundamental unit in K, show that all solutions in integers x, y of the
equation x2 − 7y2 = 2 are given by

x +
√

26y = ±εn(3 +
√

7) , n = 0,±1,±2, . . .

(7) Let K = Q(
√

35). By Dedekind’s theorem, or otherwise, show that the ideal equations

[2] = [2, ω]2 , [5] = [5, ω]2 , [ω] = [2, ω][5, ω]

hold in K, where ω = 5 +
√

35. Deduce that K has class number two. (Argue with the Minkowski
constant.)

ω+1 is the fundamental unit of K, by a preceding exercise. Hence show that all solutions in integers
x, y of the equation x2 − 35y2 = −10 are given by

x +
√

35y = ±ω(ω + 1)n , n = 0,±1,±2, . . .

Calculate the particular solution x, y for n = 1.



(8) Let K = Q(
√
−34). By Dedekind’s theorem, or otherwise, factorise 2, 3, 5 and 7 into prime ideals

in OK . Show that the ideal equations

[ω] = [5, ω][7, ω] , [ω + 3] = [2, ω + 3][5, ω + 3]2

hold in K, where ω = 1 +
√
−34. Deduce that the class group of K is cyclic of order four. (Argue

with the Minkowski constant.)

(9) By exercises (6) and (7) of example sheet 2, we know the class groups of the imaginary quadratic
fields Q(

√
−5) and Q(

√
−11). Use this information to find all solutions in integers of the diophantine

equations

y2 + 5 = x3 , y2 + 11 = x3 .

(10) Let K be a number field of degree n = r + 2s. Denote by ρ1, . . . , ρr the real embeddings of K and
by σ1, σ̄1, . . . , σs, σ̄s the complex embeddings of K into C. Recall the map λ as introduced in the
lectures

λ : O∗
K −→ Rr+s , α 7→ (log(|τ1(α)|, . . . , log(|τr(α)|), log(|σ1(α)|2), . . . , log(|σs(α)|2)) .

The image of λ is a complete lattice in the hyperplane

H = {(x1, . . . , xr, ξ1, . . . , ξs) ∈ Rr+s |
r

∑

i=1

xi +
s

∑

j=1

ξj = 0} .

We consider Rr+s with its standard scalar product and restrict it to H, thereby getting a well-defined
notion of volume on H. Show that the volume of a fundamental mesh of the lattice Γ = λ(O∗

K) is
equal to

√
r + sRK where RK is the absolute value of the determinant of an arbitrary minor of rank

t = r + s − 1 of the following matrix















λ1(ε1) · · · λ1(εt)

...
...

λt+1(ε1) · · · λt+1(εt)















Here ε1, . . . , εt is a system of fundamental units and (λ1(εi), . . . , λt+1(εi))
t = λ(εi), in the standard

coordinates on Rr+s. RK is called the regulator of K. (Hint: The column vector λ0 = 1√
r+s

(1, . . . , 1)t

is perpendicular to H and of length one; the volume of a fundamental mesh of Γ is thus given by
the absolute value of the determinant of the matrix (λ0 λ(ε1) · · ·λ(εt)). Then add all rows to a fixed
one.)

(11) Let K ⊂ L be number fields and L = K(θ) for some θ ∈ OL. Let f(X) ∈ OK [x] be the minimal
polynomial of θ over K, and put c = {α ∈ OL | α · OL ⊂ OK [θ]}. This is a non-zero ideal of
OL. Generalise Dedekind’s theorem as follows: if the prime ideal p ⊂ OK is co-prime to c (i.e.
pOL + c = OL), and f̄(x) = f̄1(x)e1 · · · f̄r(x)er is the decomposition of f̄(x) = f(x) mod p in
(OK/p)[x] into irreducible monic polynomials, then P1 = [f1(θ), p], . . . ,Pr = [fr(θ), p] are the r
different prime ideals of OL containing pOL and pOL = Pe1

1
· · ·Per

r . (Here fi(x) ∈ OK [x] is a monic
polynomial whose reduction modulo p is f̄i.)

(12) Let K = Q(
√

D1, . . . ,
√

Dm) with D1, . . . , Dm be pairwise co-prime integers, Di /∈ {0, 1} for all i.
Use the assertion of the preceding exercise that, up to at most finitely many exceptions, a prime
number p splits completely in OK , i.e. [p] = p1 · · · pn with n = 2m and pairwise different prime ideals
pi, if and only if all the congruences X2

1 ≡ D1, . . . , X
2
m ≡ Dm have a solution modulo p.

(13) Use the preceding exercise and the quadratic reciprocity law to show that, up to at most finitely
many exceptions, a prime p splits completely in Q(i,

√
3) if and only if p ≡ 1 modulo 12.

Comments, corrections and queries can be send to me at M.Strauch@dpmms.cam.ac.uk


