Lent Term 2008 M. Strauch

Number Fields: Example Sheet 1

(1) Which of the following are algebraic integers?

1 V3+V5 VB+VT 3+2V6
2 ) ) 3 \/5 ) 1— \/6 .
(2) Let D € Z, D # 0, D # 1, be a square-free integer, and put K = Q(v/D).
(a) Show that the ring of integers Ok of K is equal to Z[v/D] if D=2 mod 4 or D =3 mod 4.
Show further that O = Z[%] if D=1 mod 4.

(b) Denote by dg the discriminant of K. Show that dx =4D if D =2 mod 4 or D =3 mod 4,
and dg = D if D=1 mod 4.

(3) (a) Let f(X) = aoX"™ + ...+ an € Z[X], ag # 0, be a polynomial. Show that, if f(§) = 0 for
a,b € Z with ged(a,b) = 1, then blap and alay,.

(b) Determine which of the following polynomials are irreducible over Q: X34+ X +1, X34+ X +2,
X3+ X +3.

(4) (a) Let n be a positive integer and A € M,,(Z) be a matrix. By using elementary column and row
operations, show that there are matrices S,T € GL,(Z) such that SAT is a diagonal matrix.

(b) Let N C Z™ be a submodule of rank n. Show that there is a matrix A € M, (Z) such that
A(Z™) = N and the index [Z" : N] of N in Z" is equal to | det(A)].

(5) Let K be a number field of degree n = [K : Q], and let ay,...,a, € Ok be a basis of K/Q such
that d(aq, ..., a,) is a square-free integer. Show that ay, ..., a, is an integral basis of Ok over Z.

(6) (a) Let f(X) € Q[X] be a monic irreducible polynomial of degree n and 6 € C a root of f. Put

K = Q(6). Show that the discriminant of the basis (1,6, ...,0"!) of K is equal to (—1) m R(f, f),
where R(f, f') denotes the resultant of f and its derivative f’. The latter is also called the discrim-
inant of f.

(b) Show that the discriminant of the polynomial X3 + ¢X +d is —4c® — 27d?. Show further that
(1,0,6?) is an integral basis of Ok for K = Q(6), where 6% + 6 + 1 = 0.

(7) Let R be a commutative ring with unit. For a,b € R we say that a divides b (notation alb) if
b = ac for some ¢ € R. Note that a|]l <= a € R*. We say that a is associated to b iff a = ub
with v € R* (notation a ~ b). If R is a domain, then a ~ b <= (a|b A bla). We call an element
a € R — R* irreducible if for any factorization a = bc one of b, ¢ is a unit in R. A non-zero non-unit
a is called a prime element if a generates a prime ideal. An integral domain R is called a unique
factorization domain (UFD) if the following two conditions are satisfied:

(i) every element a € R — {0}, which is not a unit can be written as a product of (finitely many)
irreducible elements;

(ii) if a = 21 - 2 = y1 - - - ys with all z;,y; irreducible, then r = s and there is a permutation o
of {1,...,r} such that for all i: x; ~ y, ;).

(a) Show that in any domain R the prime elements are irreducible, and that in an UFD the
irreducible elements are prime elements. Show further that a domain in which (i) holds and in which
the irreducible elements are prime elements is an UFD.

(b) Recall that a principal ideal domain (PID) is an integral domain in which every ideal is
principal (that is, generated by a single element). Show that a PID is a Dedekind domain. Show
further that a PID is an UFD.



Remark. Conversely, we will see later that a Dedekind domain which is an UFD is a PID.

(8) An integral domain R is called a euclidian domain if there is a map N : R — {0} — Z( such that
for all a,b € R, b # 0, there are d,r € R with the property that

a=db+r,
with either » = 0 or r # 0 and N(r) < N(b).

(a) Show that the ring of Gaussian integers Z[i] is an euclidian ring. (Hint: take N = Ng(; /o and
use the graphic interpretation of elements of Z[i| as lattice points in C.)
(b) Show that any euclidian domain is a principal ideal domain. Deduce that Z[i] is a UFD.
(c) Show that the group of units of Z[7] is {1, —1,7, —i}.
(9) (a) Let p be an odd prime number. Show that the congruence 22 = —1 mod p has a solution
v € Z if and only if p =1 mod 4. (Hint: use the fact that the multiplicative group I, is cyclic.)

(b) Use (a) and the preceding exercise to show that a prime p which is congruent to 1 mod 4 is
of the form a? + b? with a,b € Z. (Hint: p can not be a prime element in Z[i] because p|(x? + 1)
would then imply p|(z + ) or p|(z — i). Thus p is not irreducible in Z[i].)

(c) Show that a prime number p which is congruent to 3 mod 4 is a prime element in Z[i].
(10) Prime elements in Z[i]. Use the preceding two exercises two show that the prime elements of Z[i]
are, up to associated elements, given as follows:
(1) 1+,
(2) p, with p =3 mod 4,
(3) a+ ib, with p = a? + b? a prime number =1 mod 4 and a > |b|.
(11) The ring of integers O of K = Q(v/—5) is by exercise 2 equal to Z[v/—5]. Show that 3,7, 1+2v/—5
and 1 — 2y/—5 are all irreducible elements in Ok. (Hint: use the norm Ng/q.) Deduce from the
equation 3 -7 = (14 2y/—5) - (1 — 2y/—5) that Ok is not a UFD.

(12) Show that the rings of integers O, where K = Q(v/D), are euclidian domains for D = —3, —2,2, 3.
These rings are in particular all unique factorization domains. (Hint: proceed as in exercise 8.)

(13) Explain why the equation 2-11 = (5+v/3) - (5 — v/3) is not inconsistent with the fact that Z[/3]
has unique factorization.

(14) Let G be the Galois group of K = Q(v/2,v/7) over Q. You may assume that G = {1, a, 8, a3}

where

a(V2) = V2, a(VT) = V7, B(V2) = —V2, B(VT) = VT.

By considering the relative traces 6 + (), where o runs through the elements of G other than
the identity, show that the integers in K have the form

1
9:§(a+b\f7+cx/§+d\/ﬁ),

where a,b, c,d are rational integers. By computing the relative norm 6o (6), where o € G takes
V2 to —/2, or otherwise, show that a and b are even and that ¢ = d mod 2. Hence prove that an
integral basis for Ok is 1,v/2, /7, %(\/i+ V14).

(15) Show that an integral domain with finitely many elements is a field.

Comments, corrections and queries can be send to me at M.Strauch@dpmms.cam.ac.uk



