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Number Fields: Example Sheet 1

(1) Which of the following are algebraic integers?
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(2) Let D ∈ Z, D 6= 0, D 6= 1, be a square-free integer, and put K = Q(
√
D).

(a) Show that the ring of integers OK of K is equal to Z[
√
D] if D ≡ 2 mod 4 or D ≡ 3 mod 4.

Show further that OK = Z[1+
√
D

2 ] if D ≡ 1 mod 4.

(b) Denote by dK the discriminant of K. Show that dK = 4D if D ≡ 2 mod 4 or D ≡ 3 mod 4,
and dK = D if D ≡ 1 mod 4.

(3) (a) Let f(X) = a0X
n + . . . + an ∈ Z[X], a0 6= 0, be a polynomial. Show that, if f(ab ) = 0 for

a, b ∈ Z with gcd(a, b) = 1, then b|a0 and a|an.

(b) Determine which of the following polynomials are irreducible over Q: X3±X+1, X3±X+2,
X3 ±X + 3.

(4) (a) Let n be a positive integer and A ∈Mn(Z) be a matrix. By using elementary column and row
operations, show that there are matrices S, T ∈ GLn(Z) such that SAT is a diagonal matrix.

(b) Let N ⊂ Zn be a submodule of rank n. Show that there is a matrix A ∈ Mn(Z) such that
A(Zn) = N and the index [Zn : N ] of N in Zn is equal to | det(A)|.

(5) Let K be a number field of degree n = [K : Q], and let α1, . . . , αn ∈ OK be a basis of K/Q such
that d(α1, . . . , αn) is a square-free integer. Show that α1, . . . , αn is an integral basis of OK over Z.

(6) (a) Let f(X) ∈ Q[X] be a monic irreducible polynomial of degree n and θ ∈ C a root of f . Put
K = Q(θ). Show that the discriminant of the basis (1, θ, . . . , θn−1) ofK is equal to (−1)

n(n−1)
2 R(f, f ′),

where R(f, f ′) denotes the resultant of f and its derivative f ′. The latter is also called the discrim-
inant of f .

(b) Show that the discriminant of the polynomial X3 + cX + d is −4c3− 27d2. Show further that
(1, θ, θ2) is an integral basis of OK for K = Q(θ), where θ3 + θ + 1 = 0.

(7) Let R be a commutative ring with unit. For a, b ∈ R we say that a divides b (notation a|b) if
b = ac for some c ∈ R. Note that a|1 ⇐⇒ a ∈ R∗. We say that a is associated to b iff a = ub
with u ∈ R∗ (notation a ∼ b). If R is a domain, then a ∼ b ⇐⇒ (a|b ∧ b|a). We call an element
a ∈ R−R∗ irreducible if for any factorization a = bc one of b, c is a unit in R. A non-zero non-unit
a is called a prime element if a generates a prime ideal. An integral domain R is called a unique
factorization domain (UFD) if the following two conditions are satisfied:

(i) every element a ∈ R− {0}, which is not a unit can be written as a product of (finitely many)
irreducible elements;

(ii) if a = x1 · · ·xr = y1 · · · ys with all xi, yj irreducible, then r = s and there is a permutation σ
of {1, . . . , r} such that for all i: xi ∼ yσ(i).

(a) Show that in any domain R the prime elements are irreducible, and that in an UFD the
irreducible elements are prime elements. Show further that a domain in which (i) holds and in which
the irreducible elements are prime elements is an UFD.

(b) Recall that a principal ideal domain (PID) is an integral domain in which every ideal is
principal (that is, generated by a single element). Show that a PID is a Dedekind domain. Show
further that a PID is an UFD.



Remark. Conversely, we will see later that a Dedekind domain which is an UFD is a PID.

(8) An integral domain R is called a euclidian domain if there is a map N : R−{0} → Z>0 such that
for all a, b ∈ R, b 6= 0, there are d, r ∈ R with the property that

a = db+ r ,

with either r = 0 or r 6= 0 and N(r) < N(b).

(a) Show that the ring of Gaussian integers Z[i] is an euclidian ring. (Hint: take N = NQ(i)/Q and
use the graphic interpretation of elements of Z[i] as lattice points in C.)

(b) Show that any euclidian domain is a principal ideal domain. Deduce that Z[i] is a UFD.

(c) Show that the group of units of Z[i] is {1,−1, i,−i}.
(9) (a) Let p be an odd prime number. Show that the congruence x2 ≡ −1 mod p has a solution
x ∈ Z if and only if p ≡ 1 mod 4. (Hint: use the fact that the multiplicative group F∗p is cyclic.)

(b) Use (a) and the preceding exercise to show that a prime p which is congruent to 1 mod 4 is
of the form a2 + b2 with a, b ∈ Z. (Hint: p can not be a prime element in Z[i] because p|(x2 + 1)
would then imply p|(x+ i) or p|(x− i). Thus p is not irreducible in Z[i].)

(c) Show that a prime number p which is congruent to 3 mod 4 is a prime element in Z[i].

(10) Prime elements in Z[i]. Use the preceding two exercises two show that the prime elements of Z[i]
are, up to associated elements, given as follows:

(1) 1 + i,
(2) p, with p ≡ 3 mod 4,
(3) a+ ib, with p = a2 + b2 a prime number ≡ 1 mod 4 and a > |b|.

(11) The ring of integersOK of K = Q(
√−5) is by exercise 2 equal to Z[

√−5]. Show that 3, 7, 1+2
√−5

and 1 − 2
√−5 are all irreducible elements in OK . (Hint: use the norm NK/Q.) Deduce from the

equation 3 · 7 = (1 + 2
√−5) · (1− 2

√−5) that OK is not a UFD.

(12) Show that the rings of integersOK , whereK = Q(
√
D), are euclidian domains forD = −3,−2, 2, 3.

These rings are in particular all unique factorization domains. (Hint: proceed as in exercise 8.)

(13) Explain why the equation 2 · 11 = (5 +
√

3) · (5−√3) is not inconsistent with the fact that Z[
√

3]
has unique factorization.

(14) Let G be the Galois group of K = Q(
√

2,
√

7) over Q. You may assume that G = {1, α, β, αβ}
where
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By considering the relative traces θ + σ(θ), where σ runs through the elements of G other than
the identity, show that the integers in K have the form
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14) ,

where a, b, c, d are rational integers. By computing the relative norm θσ(θ), where σ ∈ G takes√
2 to −√2, or otherwise, show that a and b are even and that c ≡ d mod 2. Hence prove that an

integral basis for OK is 1,
√

2,
√

7, 1
2(
√

2 +
√

14).

(15) Show that an integral domain with finitely many elements is a field.

Comments, corrections and queries can be send to me at M.Strauch@dpmms.cam.ac.uk


