Lent Term 2007 Matthias Strauch

Number Fields: Example Sheet 3

(1) Let D > 1 be a square-free integer and put K = Q(v/D). Recall that the fundamental unit of K
is an element g9 € O} such that ¢p = min{e € O}, | ¢ > 1}. Use the algorithm explained in the
lectures to determine the fundamental unit of K for D = 13,17, 26,29, 35,37,53 and 77.

(2) Let m > 1 and Dy,...,D,, be pairwise co-prime integers, D; ¢ {0,1} for all i. Put K =
Q(V/Dx1,...,vDy,). Show by induction over m that [K : Q] = 2™.

(3) For a number field K let as usual r and s denote the number of real and half the number of
complex embeddings, respectively. Determine r and s in the following cases:

(a) K =Q(v/Du,...,v/Dy,) as in the preceding exercise.
(b) K = Q( /D), where D > 1 is a square-free integer and m > 2.
(4) Let K be a number field. Recall that a prime number p is called ramified in K if in the prime ideal
decomposition [p] = pOg = p{' ---p¢" at least one of the exponents e; is > 1. Now let K = Q(vD)
for some square-free integer D ¢ {0,1}. On a previous example sheet we have seen that Ox = Z[0)]

for some 0 € Ok. Use the explicit description of § and Dedekind’s theorem to give a direct proof
that the primes which ramify in K are the prime divisors of the the discriminant of K.

(5) Let K = Q(+/26) and let ¢ = 5 + 1/26. Use Dedekind’s theorem to show that the ideal equations

2] =[2,e+1]*, Bl =[B,e+1]B,e—1], [e+1] =[2,e +1][5,e + 1]
hold in K. Deduce that K has class number two. (Argue with the Minkowski constant.)

¢ is the fundamental unit of K, by a preceding exercise. Use this fact to show that all solutions in
integers z, y of the equation 22 — 26y% = £10 are given by
x4+ V20y=+xe"(et1), n=0,£1,+2,...

(6) Show that € = % is a unit in K = Q(v/7). Show further that [2] is the square of the principal

ideal in O generated by 3 + V7. Use the Minkowski constant to show that K has class number
one.

Assuming further that € is the fundamental unit in K, show that all solutions in integers x, y of the
equation x? — 7y? = 2 are given by

T+ V26y = +e"(34+V7), n=0,+1,42,...
(7) Let K = Q(+v/35). By Dedekind’s theorem, or otherwise, show that the ideal equations

[2] = [27w]27 [5] = [570‘)]27 [w] = [2vw][57w]

hold in K, where w = 5+ v/35. Deduce that K has class number two. (Argue with the Minkowski
constant.)

w—+ 1 is the fundamental unit of K, by a preceding exercise. Hence show that all solutions in integers
x, y of the equation 22 — 35y? = —10 are given by

r+V3hy =tww+1)", n=0,+£1,+2,...

Calculate the particular solution x,y for n = 1.



(8) Let K = Q(v/—34). By Dedekind’s theorem, or otherwise, factorise 2, 3, 5 and 7 into prime ideals
in Ok. Show that the ideal equations

[w] = [5,w][7,w], [w+3]=[2,w+3][5,w + 3

hold in K, where w = 1 4+ v/—34. Deduce that the class group of K is cyclic of order four. (Argue
with the Minkowski constant.)

(9) By exercises (6) and (7) of example sheet 2, we know the class groups of the imaginary quadratic
fields Q(v/—5) and Q(y/—11). Use this information to find all solutions in integers of the diophantine

equations
VP45 =a?, y?+11 =23,

(10) Let K be a number field of degree n = r 4+ 2s and denote by {7} = {p1,...,pr,01,01,...,05,0s}
the set of embeddings of K into C. Recall the space [[[. Rt = {(z;), € [[ R | for all 7 : 2, =z}
and the isomorphism

+ = r+s
[H]R] — R Xy Ty T3 Ty - -5 Ty Tay) = (Tprs e oy Tpps 2Tay 5+ - 2Ty ) -
-

The map A : O3 — R maps O} to a complete lattice in the hyperplane H = {(z1,...,Zr4s) €
R™* | 3. 2; = 0}. We consider R"** with its standard scalar product and restrict it to H, thereby
getting a well-defined notion of volume on H. Show that the volume of a fundamental mesh of the
lattice I' = A(O%) is equal to /r + sRi where Rk is the absolute value of the determinant of an
arbitrary minor of rank t = r 4+ s — 1 of the following matrix

Aler) - Aaler)
At+1(e1) o0 Awpal(er)
Here €1, ...,&; is a system of fundamental units and (A1(g;), ..., \et1(€:))" = A(g;), in the standard
coordinates on R™**. Ry is called the requlator of K. (Hint: The column vector A\g = —~—(1,...,1)¢

Vr+s
is perpendicular to H and of length one; the volume of a fundamental mesh of I' is thus given by

the absolute value of the determinant of the matrix (Ag A(e1)--- A(e¢)). Then add all rows to a fixed
one.)

(11) Let K C L be number fields and L = K(0) for some 0 € Op. Let f(X) € Og|[X] be the minimal
polynomial of § over K, and put F = {a € Or | a- O C Og][f]}. This is a non-zero ideal of
Opr. Generalise Dedekind’s theorem as follows: if the prime ideal p C Ok is co-prime to F (i.e.
p+(FNOg) =0k), and f(X) = f1(X) - f(X) is the decomposition of f(X) = f(X) mod p
in (O /p)[X] into irreducible polynomials, then 1 = [f1(0),p], ..., B, = [f-(6),p] are the r different
prime ideals of Of, containing pOy, and pOr = P --- P& (fi(X) € Ox[X] is a monic polynomial
whose reduction modulo p is f;.).

(12) Let K = Q(v/Dy,...,v/Dy,) with Dy,..., Dy, be pairwise co-prime integers, D; ¢ {0,1} for all i.
Use the assertion of preceding exercise that, up to at most finitely many exceptions, a prime number
p splits completely in Ok, i.e. [p] = p1---p, with n = 2™ and pairwise different prime ideals p;, if
and only if all the congruences X 12 = Dy,..., X2 = D,, have a solution modulo p.

(13) Use the preceding exercise and the quadratic reciprocity law to show that, up to at most finitely
many exceptions, a prime p splits completely in Q(i,/3) if and only if p = 1 modulo 12.

Comments, corrections and queries can be send to me at M.Strauch@dpmms.cam.ac.uk



