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Number Fields: Example Sheet 3

(1) Let D > 1 be a square-free integer and put K = Q(
√
D). Recall that the fundamental unit of K

is an element ε0 ∈ O∗K such that ε0 = min{ε ∈ O∗K | ε > 1}. Use the algorithm explained in the
lectures to determine the fundamental unit of K for D = 13, 17, 26, 29, 35, 37, 53 and 77.

(2) Let m ≥ 1 and D1, . . . , Dm be pairwise co-prime integers, Di /∈ {0, 1} for all i. Put K =
Q(
√
D1, . . . ,

√
Dm). Show by induction over m that [K : Q] = 2m.

(3) For a number field K let as usual r and s denote the number of real and half the number of
complex embeddings, respectively. Determine r and s in the following cases:

(a) K = Q(
√
D1, . . . ,

√
Dm) as in the preceding exercise.

(b) K = Q( m
√
D), where D > 1 is a square-free integer and m ≥ 2.

(4) Let K be a number field. Recall that a prime number p is called ramified in K if in the prime ideal
decomposition [p] = pOK = pe11 · · · perr at least one of the exponents ei is > 1. Now let K = Q(

√
D)

for some square-free integer D /∈ {0, 1}. On a previous example sheet we have seen that OK = Z[θ]
for some θ ∈ OK . Use the explicit description of θ and Dedekind’s theorem to give a direct proof
that the primes which ramify in K are the prime divisors of the the discriminant of K.

(5) Let K = Q(
√

26) and let ε = 5 +
√

26. Use Dedekind’s theorem to show that the ideal equations

[2] = [2, ε+ 1]2 , [5] = [5, ε+ 1][5, ε− 1] , [ε+ 1] = [2, ε+ 1][5, ε+ 1]

hold in K. Deduce that K has class number two. (Argue with the Minkowski constant.)

ε is the fundamental unit of K, by a preceding exercise. Use this fact to show that all solutions in
integers x, y of the equation x2 − 26y2 = ±10 are given by

x+
√

26y = ±εn(ε± 1) , n = 0,±1,±2, . . .

(6) Show that ε = 3+
√

7
3−√7

is a unit in K = Q(
√

7). Show further that [2] is the square of the principal

ideal in OK generated by 3 +
√

7. Use the Minkowski constant to show that K has class number
one.

Assuming further that ε is the fundamental unit in K, show that all solutions in integers x, y of the
equation x2 − 7y2 = 2 are given by

x+
√

26y = ±εn(3 +
√

7) , n = 0,±1,±2, . . .

(7) Let K = Q(
√

35). By Dedekind’s theorem, or otherwise, show that the ideal equations

[2] = [2, ω]2 , [5] = [5, ω]2 , [ω] = [2, ω][5, ω]

hold in K, where ω = 5 +
√

35. Deduce that K has class number two. (Argue with the Minkowski
constant.)

ω+1 is the fundamental unit of K, by a preceding exercise. Hence show that all solutions in integers
x, y of the equation x2 − 35y2 = −10 are given by

x+
√

35y = ±ω(ω + 1)n , n = 0,±1,±2, . . .

Calculate the particular solution x, y for n = 1.



(8) Let K = Q(
√−34). By Dedekind’s theorem, or otherwise, factorise 2, 3, 5 and 7 into prime ideals

in OK . Show that the ideal equations

[ω] = [5, ω][7, ω] , [ω + 3] = [2, ω + 3][5, ω + 3]2

hold in K, where ω = 1 +
√−34. Deduce that the class group of K is cyclic of order four. (Argue

with the Minkowski constant.)

(9) By exercises (6) and (7) of example sheet 2, we know the class groups of the imaginary quadratic
fields Q(

√−5) and Q(
√−11). Use this information to find all solutions in integers of the diophantine

equations

y2 + 5 = x3 , y2 + 11 = x3 .

(10) Let K be a number field of degree n = r + 2s and denote by {τ} = {ρ1, . . . , ρr, σ1, σ̄1, . . . , σs, σ̄s}
the set of embeddings of K into C. Recall the space [

∏
τ R]+ = {(xτ )τ ∈

∏
τ R | for all τ : xτ = xτ̄}

and the isomorphism

[
∏
τ

R]+ '−→ Rr+s , (xρ1 , . . . , xρr , xσ1 , xσ̄1 , . . . , xσs , xσ̄s) 7→ (xρ1 , . . . , xρr , 2xσ1 , . . . , 2xσs) .

The map λ : O∗K → Rr+s maps O∗K to a complete lattice in the hyperplane H = {(x1, . . . , xr+s) ∈
Rr+s | ∑i xi = 0}. We consider Rr+s with its standard scalar product and restrict it to H, thereby
getting a well-defined notion of volume on H. Show that the volume of a fundamental mesh of the
lattice Γ = λ(O∗K) is equal to

√
r + sRK where RK is the absolute value of the determinant of an

arbitrary minor of rank t = r + s− 1 of the following matrix



λ1(ε1) · · · λ1(εt)

...
...

λt+1(ε1) · · · λt+1(εt)




Here ε1, . . . , εt is a system of fundamental units and (λ1(εi), . . . , λt+1(εi))t = λ(εi), in the standard
coordinates on Rr+s. RK is called the regulator of K. (Hint: The column vector λ0 = 1√

r+s
(1, . . . , 1)t

is perpendicular to H and of length one; the volume of a fundamental mesh of Γ is thus given by
the absolute value of the determinant of the matrix (λ0 λ(ε1) · · ·λ(εt)). Then add all rows to a fixed
one.)

(11) Let K ⊂ L be number fields and L = K(θ) for some θ ∈ OL. Let f(X) ∈ OK [X] be the minimal
polynomial of θ over K, and put F = {α ∈ OL | α · OL ⊂ OK [θ]}. This is a non-zero ideal of
OL. Generalise Dedekind’s theorem as follows: if the prime ideal p ⊂ OK is co-prime to F (i.e.
p + (F ∩OK) = OK), and f̄(X) = f̄1(X)e1 · · · f̄r(X)er is the decomposition of f̄(X) = f(X) mod p
in (OK/p)[X] into irreducible polynomials, then P1 = [f1(θ), p], . . . ,Pr = [fr(θ), p] are the r different
prime ideals of OL containing pOL and pOL = Pe1

1 · · ·Per
r (fi(X) ∈ OK [X] is a monic polynomial

whose reduction modulo p is f̄i.).

(12) Let K = Q(
√
D1, . . . ,

√
Dm) with D1, . . . , Dm be pairwise co-prime integers, Di /∈ {0, 1} for all i.

Use the assertion of preceding exercise that, up to at most finitely many exceptions, a prime number
p splits completely in OK , i.e. [p] = p1 · · · pn with n = 2m and pairwise different prime ideals pi, if
and only if all the congruences X2

1 ≡ D1, . . . , X
2
m ≡ Dm have a solution modulo p.

(13) Use the preceding exercise and the quadratic reciprocity law to show that, up to at most finitely
many exceptions, a prime p splits completely in Q(i,

√
3) if and only if p ≡ 1 modulo 12.

Comments, corrections and queries can be send to me at M.Strauch@dpmms.cam.ac.uk


