MATHEMATICS OF MACHINE LEARNING Example Sheet 3 (of 3)

1. Given a class \mathcal{F} of functions $f : \mathcal{X} \to \mathbb{R}$, let $\mathcal{H} = \{ \operatorname{sgn} \circ f : f \in \mathcal{F} \}$. Let $D = (X_i, Y_i)_{i=1}^n$ be n i.i.d. input-output pairs taking values in $\mathcal{X} \times \{-1, 1\}$. Show that for any $\hat{h} = \operatorname{sgn} \circ \hat{f} \in \mathcal{H}$ depending on D (e.g. the ERM over \mathcal{H}), and any $\rho > 0$, we have that the misclassification risk $R(\hat{h})$ satisfies

$$\mathbb{E}R(\hat{h}) \leq \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}_{\{\hat{f}(X_i)Y_i \leq \rho\}}\right) + \frac{2}{\rho}\mathcal{R}_n(\mathcal{F}).$$

[*Hint: Construct an appropriate surrogate loss* ϕ *such that* $\mathbb{1}_{(-\infty,0]} \leq \phi \leq \mathbb{1}_{(-\infty,\rho]}$ *, and* ϕ *has Lipschitz constant* $1/\rho$.]

- 2. Let $f : \mathbb{R}^d \to \mathbb{R}$ be a strictly convex function and suppose $C \subseteq \mathbb{R}^d$ is a convex set. Suppose $x_1, x_2 \in C$ satisfy $f(x_1) = f(x_2) = \inf_{x \in C} f(x)$. Show that $x_1 = x_2$.
- 3. Show that for a closed convex set $C \subseteq \mathbb{R}^d$, $\pi \in C$ is a projection of $x \in \mathbb{R}^d$ onto C if

$$(x-\pi)^{\top}(z-\pi) \le 0$$
 for all $z \in C$.

- 4. Show that $\partial \|\beta\|_1 = \{b : \text{ for each } j, b_j \in [-1, 1] \text{ and } b_j = \operatorname{sgn}(\beta_j) \text{ if } \beta_j \neq 0\}.$
- 5. Show that $x \in \mathbb{R}^d$ minimises $f : \mathbb{R}^d \to \mathbb{R}$ if and only if $0 \in \partial f(x)$.
- 6. This question derives the form of the projection onto an ℓ_1 -norm constraint set.
 - (a) Fix $x \in \mathbb{R}^p$ and $\gamma > 0$, and let $g(\beta) := \|\beta x\|_2^2/2 + \gamma \|\beta\|_1$. Show that g is minimised over $\beta \in \mathbb{R}^p$ by

$$\beta_j^* = \max(|x_j| - \gamma, 0)\operatorname{sgn}(x_j)$$

[Hint: Use 4 and 5.]

- (b) Argue that if β^* above has $\|\beta^*\|_1 = \lambda$, then β^* is the projection of x onto the set $C = \{z : \|z\|_1 \le \lambda\}$ i.e. $\beta^* = \pi_C(x)$.
- 7. Consider a version of stochastic gradient descent for minimising

$$f(\beta) = \frac{1}{n} \sum_{i=1}^{n} \ell(h_{\beta}(x_i), y_i)$$

(assumed here to be differentiable) over $\beta \in C \subseteq \mathbb{R}^p$ where C is closed and convex, and let $\hat{\beta}$ be the minimiser. We take U_1, \ldots, U_{k-1} uniformly distributed on $\{1, \ldots, p\}$ and writing $\beta^{(s)} \in \mathbb{R}^p$ for the sth iterate we take

$$\tilde{g}_s = e_{U_s} \frac{\partial f}{\partial \beta_{U_s}} \bigg|_{\beta^{(s)}}$$

Show that under the setup of Theorem 23 on the convergence of gradient descent (so in particular we assume $\sup_{\beta \in C} \|\nabla f(\beta)\|_2 \leq L$, the output $\overline{\beta}$ of the algorithm set out above, with a suitable step size $\eta > 0$ you should specify, satisfies

$$\mathbb{E}f(\bar{\beta}) - f(\hat{\beta}) \le 2LR\sqrt{\frac{p}{k}}.$$

8. The following result shows that the theory for stochastic gradient descent can be used to obtain some forms of generalisation error bounds. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be i.i.d. input-output pairs. Consider empirical risk minimisation with logistic loss ϕ where $\mathcal{X} =$ $\{x \in \mathbb{R}^p : ||x||_2 \leq C\}$ and $\mathcal{H} = \{x \mapsto x^\top \beta : ||\beta||_2 \leq \lambda\}$. Let π denote projection onto $\{\beta : ||\beta||_2 \leq \lambda\}$. Let $\beta_1 \in \mathbb{R}^p$ be the 0 vector and define iteratively for $i = 1, \ldots, n-1$,

$$g_i = Y_i X_i \phi'(Y_i X_i^{\top} \beta_i),$$

$$\beta_{i+1} = \pi(\beta_i - \eta g_i).$$

[Note the β_i above are vectors.] Let $\bar{\beta} = \frac{1}{n} \sum_{i=1}^n \beta_i$ and set $\bar{h}(x) = x^{\top} \bar{\beta}$. Show that for some step size $\eta > 0$ you should specify,

$$\mathbb{E}R_{\phi}(\bar{h}) - R_{\phi}(h^*) \le \frac{2C\lambda}{\log(2)\sqrt{n}}$$

[*Hint:* Write the risk itself in the form $\mathbb{E}\tilde{f}(\beta; U)$ for some U.]

- 9. Consider the Adaboost algorithm with base class \mathcal{B} (satisfying that if $h \in \mathcal{B}$ then $-h \in \mathcal{B}$) and assume that at no iteration does any $h \in \mathcal{B}$ perfectly classify the data.
 - (a) Show that

$$\frac{\sum_{i=1}^{n} w_i^{(m+1)}}{\sum_{i=1}^{n} w_i^{(m)}} = 2\sqrt{\widehat{\operatorname{err}}_m (1 - \widehat{\operatorname{err}}_m)}$$

where $\widehat{\operatorname{err}}_m := \operatorname{err}_m(\hat{h}_m).$

(b) Assume that for each m, $\widehat{\operatorname{err}}_m \leq 1/2 - \gamma$ for some $\gamma > 0$. Show that the empirical risk of the Adaboost output decreases exponentially fast with M:

$$\frac{1}{n}\sum_{i=1}^{n}\exp(-Y_{i}\hat{f}_{M}(X_{i})) = \prod_{m=1}^{M}2\sqrt{\widehat{\operatorname{err}}_{m}(1-\widehat{\operatorname{err}}_{m})}$$

$$\leq \exp(-2\gamma^{2}M).$$
(1)

(c) Let

$$\mathcal{H} = \left\{ \sum_{m=1}^{M} \beta_m h_m : \|\beta\|_1 \le 1, \ h_m \in \mathcal{B} \text{ for } m = 1, \dots, M \right\}.$$

Explain why for $x_{1:n} \in \mathcal{X}^n$,

$$\hat{\mathcal{R}}(\mathcal{H}(x_{1:n})) \le \sqrt{\frac{2\mathrm{VC}(\mathcal{B})\log(n+1)}{n}}$$

(d) Given input–output pairs $(X_i, Y_i)_{i=1}^n$ taking values in $\mathcal{X} \times \{-1, 1\}$, let $\hat{f}_M = \sum_{m=1}^M \hat{\beta}_m \hat{h}_m$ be the output of the Adaboost algorithm with base classifier class \mathcal{B} . With the assumption of (b) that $0 < \hat{\operatorname{err}}_m \leq 1/2 - \gamma$ for some $1/2 > \gamma > \rho > 0$, show that

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{\hat{f}_{M}(X_{i})Y_{i} \le \rho \|\hat{\beta}\|_{1}\}} \le \exp\{-2M(\gamma^{2} - c\rho)\}, \text{ where } c = \frac{1}{4} \log\left(\frac{1+2\gamma}{1-2\gamma}\right),$$

and $\hat{\beta} := (\hat{\beta}_m)_{m=1}^M$. [Hint: Use $\mathbb{1}_{\{u \leq b\}} \leq \exp(b-u)$ and (1). You may further use the fact that $u \mapsto u^{1-\rho}(1-u)^{1+\rho}$ is increasing for $0 < u < 1/2 - \rho$.]

(e) Show that writing $\hat{h} := \operatorname{sgn} \circ \hat{f}_M$, we have that the misclassification risk $R(\hat{h})$ satisfies

$$\mathbb{E}R(\hat{h}) \le \exp\{-2M(\gamma^2 - c\rho)\} + \frac{2}{\rho}\sqrt{\frac{2\mathrm{VC}(\mathcal{B})\log(n+1)}{n}}.$$

[Hint: Recall Qu. 1.]

10. Let $\mathcal{X} = \mathbb{R}^p$. Consider performing gradient boosting with base regression procedure the empirical risk minimiser over $\mathcal{H} = \{x \mapsto \mu + x_j\beta : j \in \{1, \dots, p\}, \ \mu, \beta \in \mathbb{R}\}$ with squared error loss. Consider the *m*th iteration. Show that $\hat{g}_m(x) = \hat{\mu}_{\hat{j}} + x_{\hat{j}}\hat{\beta}_{\hat{j}}$ where

$$\hat{\beta}_{j} := \frac{\sum_{i=1}^{n} (W_{i} - \bar{W}) (X_{ij} - \bar{X}_{j})}{\sum_{i=1}^{n} (X_{ij} - \bar{X}_{j})^{2}}$$
$$\hat{\mu}_{j} := \bar{W} - \hat{\beta}_{j} \bar{X}_{j},$$

with $\bar{X}_j := \frac{1}{n} \sum_{i=1}^n X_{ij}$ and $\bar{W} := \frac{1}{n} \sum_{i=1}^n W_i$, and \hat{j} maximises $|\hat{\rho}_j|$ over $j = 1, \dots, p$ with $\hat{\rho}_j := \frac{\sum_{i=1}^n (W_i - \bar{W})(X_{ij} - \bar{X}_j)}{\left(\sum_{i=1}^n (W_i - \bar{W})^2\right)^{1/2} \left(\sum_{i=1}^n (X_{ij} - \bar{X}_j)^2\right)^{1/2}}.$

11. Consider the optimisation problem of performing a weighted empirical risk minimisation over the class of decision stumps. Specifically, suppose we have weights $w_1, \ldots, w_n > 0$ and a single predictor whose observations have been sorted as $X_1 < \cdots < X_n$. Show then that finding an ERM over

$$\mathcal{B} = \{ x \mapsto \operatorname{sgn}(x - a), \ x \mapsto \operatorname{sgn}(a - x) : a \in \mathbb{R} \}$$

(i.e. minimising $\sum_{i=1}^{n} w_i \mathbb{1}_{\{h(X_i) \neq Y_i\}}$) may be performed in O(n) computational operations.

12. In this question, we will study the Rademacher complexity of a simple neural network with a single hidden layer of m nodes, reLU activation function ψ , and additional ℓ_2 -norm constraints on the parameters. Specifically, consider the set \mathcal{H} of hypotheses of the form

$$h(x) = \sum_{j=1}^{m} \alpha_j \psi(\beta_j^\top x)$$

where $\alpha_j \in \mathbb{R}$ and $\beta_j \in \mathbb{R}^p$ for j = 1, ..., m, with the constraints $\|\alpha\|_2 \leq \lambda_\alpha$ and $\max_{j=1,...,m} \|\beta_j\|_2 \leq \lambda_\beta$. Let $\mathcal{X} = \{x \in \mathbb{R}^p : \|x\|_2 \leq C\}$ and take $x_{1:n} \in \mathcal{X}^n$.

(a) By considering $\mathcal{B} := \{x \mapsto \psi(b^{\top}x) : \|b\|_2 \le \lambda_{\beta}\}$ and $\mathcal{B}' = \{x \mapsto b^{\top}x : \|b\|_2 \le \lambda_{\beta}\}$, show that

$$\mathbb{E}\bigg(\sup_{b:\|b\|_2 \le \lambda_{\beta}} \left|\frac{1}{n} \sum_{i=1}^n \varepsilon_i \psi(b^\top x_i)\right|\bigg) \le \frac{2C\lambda_{\beta}}{\sqrt{n}}$$

where $\varepsilon_{1:n}$ are i.i.d. Rademacher random variables. [*Hint: Apply the contraction lemma.*]

(b) Let us introduce the set of vector-valued functions $\mathcal{G} := \{g := (g_1, \ldots, g_m) : g_j \in \mathcal{B} \text{ for } j = 1, \ldots, m\}$. Show that

$$\hat{\mathcal{R}}(\mathcal{H}(x_{1:n})) = \lambda_{\alpha} \mathbb{E}\left(\sup_{g \in \mathcal{G}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} g(x_{i}) \right\|_{2} \right).$$

(c) Finally show that

$$\hat{\mathcal{R}}(\mathcal{H}(x_{1:n})) \leq 2C\lambda_{\alpha}\lambda_{\beta}\sqrt{\frac{m}{n}}.$$