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1. Given a class F of functions f : X → R, let H = {sgn◦f : f ∈ F}. Let D = (Xi, Yi)
n
i=1 be

n i.i.d. input–output pairs taking values in X ×{−1, 1}. Show that for any ĥ = sgn◦ f̂ ∈ H
depending on D (e.g. the ERM over H), and any ρ > 0, we have that the misclassification
risk R(ĥ) satisfies

ER(ĥ) ≤ E

(
1

n

n∑
i=1

1{f̂(Xi)Yi≤ρ}

)
+

2

ρ
Rn(F).

[Hint: Construct an appropriate surrogate loss ϕ such that 1(−∞,0] ≤ ϕ ≤ 1(−∞,ρ], and ϕ
has Lipschitz constant 1/ρ.]

2. Let f : Rd → R be a strictly convex function and suppose C ⊆ Rd is a convex set. Suppose
x1, x2 ∈ C satisfy f(x1) = f(x2) = infx∈C f(x). Show that x1 = x2.

3. Show that for a closed convex set C ⊆ Rd, π ∈ C is a projection of x ∈ Rd onto C if

(x− π)⊤(z − π) ≤ 0 for all z ∈ C.

4. Show that ∂∥β∥1 = {b : for each j, bj ∈ [−1, 1] and bj = sgn(βj) if βj ̸= 0}.

5. Show that x ∈ Rd minimises f : Rd → R if and only if 0 ∈ ∂f(x).

6. This question derives the form of the projection onto an ℓ1-norm constraint set.

(a) Fix x ∈ Rp and γ > 0, and let g(β) := ∥β−x∥22/2+γ∥β∥1. Show that g is minimised
over β ∈ Rp by

β∗j = max(|xj | − γ, 0)sgn(xj).

[Hint: Use 4 and 5.]

(b) Argue that if β∗ above has ∥β∗∥1 = λ, then β∗ is the projection of x onto the set
C = {z : ∥z∥1 ≤ λ} i.e. β∗ = πC(x).

7. Consider a version of stochastic gradient descent for minimising

f(β) =
1

n

n∑
i=1

ℓ(hβ(xi), yi)

(assumed here to be differentiable) over β ∈ C ⊆ Rp where C is closed and convex, and let
β̂ be the minimiser. We take U1, . . . , Uk−1 uniformly distributed on {1, . . . , p} and writing
β(s) ∈ Rp for the sth iterate we take

g̃s = eUs

∂f

∂βUs

∣∣∣∣
β(s)

.

Show that under the setup of Theorem 23 on the convergence of gradient descent (so in
particular we assume supβ∈C ∥∇f(β)∥2 ≤ L, the output β̄ of the algorithm set out above,
with a suitable step size η > 0 you should specify, satisfies

Ef(β̄)− f(β̂) ≤ 2LR

√
p

k
.
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8. The following result shows that the theory for stochastic gradient descent can be used
to obtain some forms of generalisation error bounds. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d.
input–output pairs. Consider empirical risk minimisation with logistic loss ϕ where X =
{x ∈ Rp : ∥x∥2 ≤ C} and H = {x 7→ x⊤β : ∥β∥2 ≤ λ}. Let π denote projection onto
{β : ∥β∥2 ≤ λ}. Let β1 ∈ Rp be the 0 vector and define iteratively for i = 1, . . . , n− 1,

gi = YiXiϕ
′(YiX

⊤
i βi),

βi+1 = π(βi − ηgi).

[Note the βi above are vectors.] Let β̄ = 1
n

∑n
i=1 βi and set h̄(x) = x⊤β̄. Show that for

some step size η > 0 you should specify,

ERϕ(h̄)−Rϕ(h
∗) ≤ 2Cλ

log(2)
√
n
.

[Hint: Write the risk itself in the form Ef̃(β;U) for some U .]

9. Consider the Adaboost algorithm with base class B (satisfying that if h ∈ B then −h ∈ B)
and assume that at no iteration does any h ∈ B perfectly classify the data.

(a) Show that ∑n
i=1w

(m+1)
i∑n

i=1w
(m)
i

= 2
√
êrrm(1− êrrm)

where êrrm := errm(ĥm).

(b) Assume that for each m, êrrm ≤ 1/2 − γ for some γ > 0. Show that the empirical
risk of the Adaboost output decreases exponentially fast with M :

1

n

n∑
i=1

exp(−Yif̂M (Xi)) =
M∏

m=1

2
√

êrrm(1− êrrm) (1)

≤ exp(−2γ2M).

(c) Let

H =

{
M∑

m=1

βmhm : ∥β∥1 ≤ 1, hm ∈ B for m = 1, . . . ,M

}
.

Explain why for x1:n ∈ X n,

R̂(H(x1:n)) ≤
√

2VC(B) log(n+ 1)

n
.

(d) Given input–output pairs (Xi, Yi)
n
i=1 taking values in X×{−1, 1}, let f̂M =

∑M
m=1 β̂mĥm

be the output of the Adaboost algorithm with base classifier class B. With the as-
sumption of (b) that 0 < êrrm ≤ 1/2− γ for some 1/2 > γ > ρ > 0, show that

1

n

n∑
i=1

1{f̂M (Xi)Yi≤ρ∥β̂∥1} ≤ exp{−2M(γ2 − cρ)}, where c =
1

4
log

(
1 + 2γ

1− 2γ

)
,

and β̂ := (β̂m)Mm=1. [Hint: Use 1{u≤b} ≤ exp(b − u) and (1). You may further use
the fact that u 7→ u1−ρ(1− u)1+ρ is increasing for 0 < u < 1/2− ρ. ]
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(e) Show that writing ĥ := sgn◦ f̂M , we have that the misclassification risk R(ĥ) satisfies

ER(ĥ) ≤ exp{−2M(γ2 − cρ)}+ 2

ρ

√
2VC(B) log(n+ 1)

n
.

[Hint: Recall Qu. 1.]

10. Let X = Rp. Consider performing gradient boosting with base regression procedure the
empirical risk minimiser over H = {x 7→ µ+ xjβ : j ∈ {1, . . . , p}, µ, β ∈ R} with squared

error loss. Consider the mth iteration. Show that ĝm(x) = µ̂ĵ + xĵ β̂ĵ where

β̂j :=

∑n
i=1

(
Wi − W̄

) (
Xij − X̄j

)∑n
i=1

(
Xij − X̄j

)2 ,

µ̂j := W̄ − β̂jX̄j ,

with X̄j :=
1
n

∑n
i=1Xij and W̄ := 1

n

∑n
i=1Wi, and ĵ maximises |ρ̂j | over j = 1, . . . , p with

ρ̂j :=

∑n
i=1(Wi − W̄ )(Xij − X̄j)(∑n

i=1(Wi − W̄ )2
)1/2 (∑n

i=1(Xij − X̄j)2
)1/2 .

11. Consider the optimisation problem of performing a weighted empirical risk minimisation
over the class of decision stumps. Specifically, suppose we have weights w1, . . . , wn > 0
and a single predictor whose observations have been sorted as X1 < · · · < Xn. Show then
that finding an ERM over

B = {x 7→ sgn(x− a), x 7→ sgn(a− x) : a ∈ R}

(i.e. minimising
∑n

i=1wi1{h(Xi )̸=Yi}) may be performed in O(n) computational operations.

12. In this question, we will study the Rademacher complexity of a simple neural network
with a single hidden layer of m nodes, reLU activation function ψ, and additional ℓ2-norm
constraints on the parameters. Specifically, consider the set H of hypotheses of the form

h(x) =

m∑
j=1

αjψ(β
⊤
j x)

where αj ∈ R and βj ∈ Rp for j = 1, . . . ,m, with the constraints ∥α∥2 ≤ λα and
maxj=1,...,m ∥βj∥2 ≤ λβ. Let X = {x ∈ Rp : ∥x∥2 ≤ C} and take x1:n ∈ X n.

(a) By considering B := {x 7→ ψ(b⊤x) : ∥b∥2 ≤ λβ} and B′ = {x 7→ b⊤x : ∥b∥2 ≤ λβ},
show that

E
(

sup
b:∥b∥2≤λβ

∣∣∣∣ 1n
n∑

i=1

εiψ(b
⊤xi)

∣∣∣∣) ≤
2Cλβ√

n
,

where ε1:n are i.i.d. Rademacher random variables. [Hint: Apply the contraction
lemma.]

(b) Let us introduce the set of vector-valued functions G := {g := (g1, . . . , gm) : gj ∈
B for j = 1, . . . ,m}. Show that

R̂(H(x1:n)) = λαE
(
sup
g∈G

∥∥∥∥ 1n
n∑

i=1

εig(xi)

∥∥∥∥
2

)
.

(c) Finally show that

R̂(H(x1:n)) ≤ 2Cλαλβ

√
m

n
.
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