MATHEMATICS OF MACHINE LEARNING Part 1T
Example Sheet 3 (of 3) Lent 2025

1. Given a class F of functions f : X — R, let H = {sgnof: f € F}. Let D = (X;,Y;)I" be
n i.i.d. input—output pairs taking values in X x {—1,1}. Show that for any h = sgnof eH
depending on D (e.g. the ERM over H), and any p > 0, we have that the misclassification
risk R(h) satisfies

. 1 < 2
ER(h) < E (n Z; 1{f(xim<p}> Rl ).

[Hint: Construct an appropriate surrogate loss ¢ such that 1(_s o) < ¢ < 1(_o ), and ¢
has Lipschitz constant 1/p.]

2. Let f : R? — R be a strictly convex function and suppose C' C R? is a convex set. Suppose
x1,x9 € C satisfy f(z1) = f(x2) = infieco f(x). Show that 1 = zo.

3. Show that for a closed convex set C' C R%, 7 € C is a projection of z € R? onto C if

(z—m) (z=7) <0 for all z € C.

4. Show that 0||5||1 = {b: for each j,b; € [—1,1] and b; = sgn(p;) if B; # 0}.
5. Show that z € R? minimises f : R? — R if and only if 0 € 9f(z).
6. This question derives the form of the projection onto an ¢;-norm constraint set.
(a) Fix z € R? and v > 0, and let g(8) := ||8—z[|3/2+7]|B]1. Show that g is minimised
over 3 € RP by
B; = max(|z;| —v,0)sgn(z;).
[Hint: Use 4 and 5.]
(b) Argue that if 5* above has ||8*||1 = A, then * is the projection of z onto the set
C={z:]z|1 <A} ie. p*=mc(x).
7. Consider a version of stochastic gradient descent for minimising

n

=1

1
fB) =
(assumed here to be differentiable) over 8 € C' C RP where C' is closed and convex, and let
B be the minimiser. We take Uy, ..., Ug_1 uniformly distributed on {1,...,p} and writing
B) € RP for the sth iterate we take

of
9B,
Show that under the setup of Theorem 23 on the convergence of gradient descent (so in

particular we assume supgec |V f(8)[|2 < L, the output 3 of the algorithm set out above,
with a suitable step size nn > 0 you should specify, satisfies

gS = eUs

()

Ef(B) — f(B) < 2LR\/2.
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8. The following result shows that the theory for stochastic gradient descent can be used
to obtain some forms of generalisation error bounds. Let (X1,Y7),...,(X,,Y,) be ii.d.
input—output pairs. Consider empirical risk minimisation with logistic loss ¢ where X =
{x € RP : |jz]|s < C}and H = {x — 2T : ||B]l2 < A\}. Let 7 denote projection onto
{B:|1Bll2 < A}. Let 81 € RP be the 0 vector and define iteratively for i = 1,...,n — 1,

= Y Xid' (Y X, i),
5z‘+1 = (B — n9i)-

[Note the 3; above are vectors.] Let 3 = 13" | 3, and set h(z) = = 3. Show that for
some step size 1 > 0 you should specify,

20\
~ log(2)v/n’

[Hint: Write the risk itself in the form Ef(3;U) for some U.]

ERy(h) — Ry(h") <

9. Consider the Adaboost algorithm with base class B (satisfying that if h € B then —h € B)
and assume that at no iteration does any h € B perfectly classify the data.

(a) Show that

n (m+1)
251% = 2y/@tt (1 — ity
i=1W;

where ért,, := errm(ﬁm).

(b) Assume that for each m, érr,, < 1/2 — ~ for some v > 0. Show that the empirical
risk of the Adaboost output decreases exponentially fast with M:

— Zexp YfM H 2v/€rt,, (1 — ertyy,) (1)
< exp(—2fy2M).
(c) Let

M
:{Zﬁmhm:HBHlSl, hmEBformzl,...,M}.
m=1

Explain why for 1., € X",

R(H (1)) < \/ VOB o £ 1)

(d) Given input-output pairs (X;, Y;)?_; taking values in X'x{—1, 1}, let fur = Z%Zl Binbim,
be the output of the Adaboost algorithm with base classifier class B. With the as-
sumption of (b) that 0 < err,, <1/2 — v for some 1/2 > v > p > 0, show that

1 142y
Z U xovisodiny S SP{=2M (7’ —cp)}, where c= 7 log <1 - 27)’

and 3 := (B)M_,. [Hint: Use Lyu<py < exp(b—u) and (1)). You may further use
the fact that u — u'=P(1 — u)'° is increasing for 0 < u < 1/2 — p. ]



(¢) Show that writing / := sgno fys, we have that the misclassification risk R(h) satisfies

ER(h) < exp{—2M(* — cp)} + N ZVOB) logln +1)

n
[Hint: Recall Qu. 1.]

10. Let X = RP. Consider performing gradient boosting with base regression procedure the
empirical risk minimiser over H = {z — p+ ;6 :j € {1,...,p}, u, 5 € R} with squared
error loss. Consider the mth iteration. Show that gm(x) = fi; + ;5; where

S (Wi = W) (Xi5 — X))

SRS TR L
fij =W — B, X;,
with X; == 13"  X;;and W:= 13" W;, and j maximises |p;| over j = 1,...,p with
A > i (Wi = W)(Xi5 — X)

Pj = o\ 1/2 o on1/2°

(S (Wi = W) (S0 (0 — X5)2)

11. Consider the optimisation problem of performing a weighted empirical risk minimisation
over the class of decision stumps. Specifically, suppose we have weights wy,...,w, > 0

and a single predictor whose observations have been sorted as X7 < --- < X,,. Show then
that finding an ERM over

B ={z~ sgn(zr —a), v+ sgn(a—x):acR}
(i.e. minimising Y i | w;lgp(x,)2y;}) may be performed in O(n) computational operations.

12. In this question, we will study the Rademacher complexity of a simple neural network
with a single hidden layer of m nodes, reLLU activation function #, and additional ¢3-norm
constraints on the parameters. Specifically, consider the set H of hypotheses of the form

h(z) =Y ap(B] =)
j=1
where a; € R and f; € RP for j = 1,...,m, with the constraints ||alz < Ay and
max;—1,. .m ||Bjll2 < Ag. Let X = {x € RP : ||z[|2 < C} and take z1., € A™.
(a) By considering B := {z > ¢(b'x) : ||bll2 < A} and B = {z — b Tz : ||b]]2 < Ag},

show that
20\
E( sup > < A
b:(|bll2<As

n

D

n -
=1

— \/ﬁ )
where €1., are i.i.d. Rademacher random variables. [Hint: Apply the contraction
lemma.]

(b) Let us introduce the set of vector-valued functions G := {g := (g1,...,.9m) : g €
B for j =1,...,m}. Show that
)

R(H(21:0)) = AaE < sup
geg

1 n
Yl
i=1

(c) Finally show that

R(H(z1m)) < QCAQ)\B\/T.



