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In the following questions, where appropriate, suppose (X1, Y1), . . . , (Xn, Yn) are i.i.d. and con-
sider loss ℓ to be misclassification loss, unless specified otherwise.

1. Show that if |H| is finite, then

ER(ĥ)−R(h∗) ≤
√

log |H|
2n

,

where as usual, ĥ is the ERM and h∗ := argmin
h∈H

R(h).

2. N participants of a machine learning competition are given training data with which
to develop classifiers. To decide the winner, the classifiers are applied to n new i.i.d.
datapoints (the so-called test data). Give a value of n such that we can be sure with
probability at least 1− δ that the risk of the winning classifier is within ϵ of the minimum
risk across the submitted classifiers.

3. Let F be the set of all polynomials of degree at most 2 on X = Rp. Show that VC(H) ≤(
p+2
2

)
, where H = {sgn ◦ f : f ∈ F}.

4. Given a collection of sets A, let H = {1A : A ∈ A}.

(a) Show that VC(H) ≤ 6 when A is the set of (filled) ellipses in R2.

(b) Show that VC(H) = 2p when A =
{∏p

j=1[aj , bj ] : a1, b1, . . . , ap, bp ∈ R
}
.

(c) Show that VC(H) = ∞ when A is the set of (filled) convex polygons in R2 and
H = {1A : A ∈ A}.

5. Let H = {x 7→ sgn(β⊤x) : β ∈ Rp}. Show that VC(H) = p.

6. Let H1,H2 be classes of functions f : X → {a, b} where a ̸= b. Show that s(H1∪H2, n) ≤
s(H1, n) + s(H2, n).

7. Let W1, . . . ,Wn be i.i.d. Rp-valued random vectors and let F : Rp → [0, 1] be given by

F (t1, . . . , tp) = P(W11 ≤ t1, . . . ,W1p ≤ tp).

Define function F̂ : Rp → [0, 1] by

F̂ (t1, . . . , tp) =
1

n

n∑
i=1

1A(Wi)

where A =
∏p

j=1(−∞, tj ]. Show that

E sup
t∈Rp

|F (t)− F̂ (t)| ≤ 2

√
2{p log(n+ 1) + log 2}

n
.

[Hint: Consider H := {1A : A =
∏p

j=1(−∞, tj ], tj ∈ R}, and H− := {−h : h ∈ H}, and
use question 6.]

1



8. Let φ1, . . . , φd : X → R be functions and let H be the class of all hypotheses h : X →
{−1, 1} of the form

h(x) = sgn

∑
j∈A

βjφj(x)


where A ⊆ {1, . . . , d} with |A| = s and βj ∈ R for all j. Show that

Rn(F) ≤
√

2s

n

√
log(n+ 1) + log d

where F = {(x, y) 7→ ℓ(h(x), y) : h ∈ H} and ℓ is misclassification loss.

9. (a) Let f, g : C → R be convex functions. Then if a, b ≥ 0, af + bg is a convex function.

(b) Let f : Rd → R be a convex function and fix A ∈ Rd×m and b ∈ Rd. Then g : Rm → R
given by g(x) = f(Ax− b) is a convex function.

(c) Let Cα ⊆ Rd be convex for all α ∈ I where I is some index set. Then ∩α∈ICα is
convex.

(d) If f : C → R is convex, then for each M ∈ R, D := {x ∈ C : f(x) ≤M} is convex.

(e) Suppose fα : C → R is convex for all α ∈ I where I is some index set, and define
g(x) := supα∈I fα(x). Then

i. D := {x ∈ C : g(x) <∞} is convex and

ii. function g restricted to D is convex.

10. Let S ⊆ Rd be a set of points.

(a) Show that if D is the set of convex combinations of sets of points in S, then D ⊇
convS.

(b) Let S ⊆ C ⊆ Rd be a convex set and let f : C → R be convex. Show that
supx∈convS f(x) = supx∈S f(x). [Hint: Use Qu. 9 (d).]

11. Use 10 (b) to prove that for any A ⊆ Rn, R̂(A) = R̂(convA).

12. (Harder) Suppose function ϕ : R → [0,∞) is convex and differentiable at 0 with ϕ′(0) < 0.
This question quantifies the fact that if for f : X → R the ϕ-risk is small, then the
misclassification risk of h := sgn ◦ f will be small.

(a) Let Cη(α) := ηϕ(α) + (1− η)ϕ(−α) and define

H(η) := inf
α∈R

Cη(α) for η ∈ [0, 1].

Show that
EH(η(X)) ≥ inf

g∈G
Rϕ(g)

where η(x) := P(Y = 1 |X = x) is the regression function and G is the set of all
functions g : X → R (you may ignore any measurability issues). (In fact equality
holds in the display above.) [Hint: Show that given ϵ > 0 there exists g ∈ G such
that EH(η(X)) + ϵ ≥ Rϕ(g).]

(b) Show that ϕ(0) = infα:α(2η−1)≤0Cη(α).
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(c) Define

ψ(θ) := ϕ(0)−H((1 + θ)/2) for θ ∈ [0, 1].

Show that ψ(0) = 0 and ψ is convex. [Hint: For the last part use Qu. 9 (e).]

(d) Show that
ψ(|2η − 1|) = ϕ(0)−H(η).

(e) Let h0 be a Bayes classifier. Show that

ψ(R(h)−R(h0)) ≤ E{1{h(X) ̸=h0(X)}ψ(|2η(X)− 1|)}.

[Hint: Use Qu. 1 of Ex. Sheet 1.]

(f) Show finally that
ψ(R(h)−R(h0)) ≤ Rϕ(f)− inf

g
Rϕ(g).

[Hint: Argue that when h(x) ̸= h0(x) then infα:α(2η(x)−1)≤0Cη(x)(α) ≤ Cη(x)(f(x)).]

(g) Show that when ϕ is the hinge loss, then

R(h)−R(h0) ≤ Rϕ(f)− inf
g
Rϕ(g).
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